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1. Introduction

In 1975, Zadeh [45] introduced the idea of interval-valued fuzzy sets. In 1986, Atanassov [1]

defined an intuitionistic fuzzy set as the generalization of a fuzzy set introduced by Zadeh [44]

in 1965. After then, many researchers [1, 2, 3, 4, 6, 7] have worked mainly on operators and

relations on intuitionistic fuzzy sets and iterval-valued intuitionistic fuzzy sets. In particular,

In 2010, Cheong and Hur [12] introduced the concept of an intuitionistic interval-valued fuzzy

set and studied it′s basic properties.

In 1986, Chang [8] was the first to introduce the notion of a fuzzy topology by using fuzzy

sets. After that, many researchers [16, 17, 20, 21, 22, 29, 30, 31, 34, 35, 42] have investigated

several properties in fuzzy topological spaces. In 1997, Çoker [13] introduced the idea of the

topology of intuitionistic fuzzy sets. Moreover, Samanta and Mondal [38, 39] introduced the

definitions of the topology of interval-valued fuzzy sets and the topology of interval-valued

intuitionistic fuzzy sets, respectively. In 2012, Bayramov and Gunduz [5] studied intuitionistic

fuzzy topology on function spaces.

However, in their definition of fuzzy topology, fuzziness in the notion of openness of a fuzzy

set was absent. In 1992, Samanta et al. [10, 18] introduced the concept of gradation of open-

ness(closecness) of fuzzy sets in X in two different ways, and gave definitions of a fuzzy topology

on X. After that, some works have been done by Ramadan [36], Demirci [15], Chattopadhyay

and Samanta [9] and Peters [32, 33]. In particular, Ying [43] introduced the concept of the topol-

ogy (called a fuzzifying topology) considering the degree of openness of an ordinary subset of a
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set. In 2012, Hur et al. [27] studied general properties in ordinary smooth topological spaces.

Also they [24, 25, 26] investigated closures interiors and compactness in ordinary smooth topo-

logical spaces. Moreover, Çoker and Demirci [14], and Samanta and Mondal [37, 40] defined

intuitionistic gradation of openness (in short IGO) of fuzzy sets in Šostak′s sense [41] thereby

gave the definition of an intuitionsitic fuzzy topology (in short, IFT). Also Hur et al. [11]

studied an interval-valued smooth topology. They mainly dealt with intuitionistic gradation

of openness of fuzzy sets in the sense of Chang. But in 2010, Lim et al. [28] investigated

intuitionistic smooth topological spaces in Lowen′s sense. Recently, Kim et al. [23] studied

continuities and neighborhood systems in intuitionistic smooth topological spaces.

In this paper, we define the ordinary intuitionistic smooth topology and obtain some its

basic properties. Next, we define the ordinary intuitionistic smooth neighborhood system and

we show that an ordinary intuitionistic smooth neighborhood system has the same properties

in a classical neighborhood system (See Theorem 4.5). Finally, we introduce the concepts of an

ordinary intuitionistic smooth base and an ordinary intuitionistic smooth subbase, and obtain

two characterization of an ordinary intuitionistic smooth base (See Theorems 5.3 and 5.4) and

one characterization of an ordinary intuitionistic smooth subbase (See Theorem 5.12).

2. Preliminaries

In this chapter, we list some concepts and results which are needed in later chapters.

Throughout this paper, X,Y, Z, etc. always denote nonempty (ordinary) sets. We will write

I = [0, 1], I0 = (0, 1] and I1 = [0, 1).

Definition 2.1 ([44]). A mapping A : X → I is called a fuzzy set in X. 0 and 1 are called

the empty fuzzy set and the whole fuzzy set in X defined by 0(x) = 0 and 1(x) = 1 for each

x ∈ X, respectively. The set {x ∈ X : A(x) > 0} is called a support of A and is denoted by

S(A) or A0.

We will denote the set of all fuzzy sets as IX .

From [8], we can see that (IX ,∪,∩,0,1) is a complete distributive lattice satisfying the

DeMorgan′s Laws with the least element 0 and the greatest element 1.

Let I ⊕ I = {(a, b) ∈ I × I : a+ b ≤ 1}, let (a, b), (c, d) ∈ I ⊕ I and let {(aα, bα)}α∈Γ ⊂ I ⊕ I.

We define the following(See [12]) :

(i) (a, b) ≤ (c, d) iff a ≤ c and b ≥ d,
(ii) (a, b) = (c, d) iff (a, b) ≤ (c, d) and (c, d) ≤ (a, b),

(iii) (a, b)c = (b, a), where (a, b)c denotes the complement of (a, b),

(iv)
∨
α∈Γ

(aα, bα) = (
∨
α∈Γ

aα,
∧
α∈Γ

bα),

(v)
∧
α∈Γ

(aα, bα) = (
∧
α∈Γ

aα,
∨
α∈Γ

bα).

Each member (a, b) of I ⊕ I will be called an intuitionistic point. When the elements of

I⊕ I are denoted be capital letters M,N, · · · , we will write M = (µM , νM ), N = (µN , νN ), · · · ,
where µM and νM are the membership and the nonmembership points, respectively. Moreover,

from Theorem 2.1 in [12], we can see that (I ⊕ I,≤) is a complete distributive lattice with the

greatest element (1, 0) and the least element (0, 1) satisfying DeMorgan’s laws.

2
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The following is the modification of the concept of the concept of intuitionistic fuzzy sets

introduced by Atanassov (See [1]).

Definition 2.2 ([12]). A mapping A : X → I ⊕ I is called an intuitionistic fuzzy set in X and

we write A(x) = (µA(x), νA(x)) for each x ∈ X. 0̃ and 1̃ are the empty intuitionistic fuzzy set

and the whole intuitionistic fuzzy set in X given by 0̃(x) = (0, 1) and 1̃(x) = (1, 0), respectively.

We will denote the set of all intuitionistic fuzzy sets in X as (I ⊕ I)X .

Definition 2.3 ([1]). Let A,B ∈ (I⊕I)X and let {Aα}α∈Γ ⊂ (I⊕I)X . Then the union
⋃
α∈Γ

Aα,

the intersection
⋂
α∈Γ

Aα, the complement Ac of A and the inclusion A ⊂ B are defined as follows:

for each x ∈ X,
(i) (

⋃
α∈Γ

Aα)(x) = (
∨
α∈Γ

µAα(x),
∧
α∈Γ

νAα(x)),

(ii) (
⋂
α∈Γ

Aα)(x) = (
∧
α∈Γ

µAα(x),
∨
α∈Γ

νAα(x)),

(iii) Ac(x) = (νA(x), µA(x)),

(iv) A ⊂ B iff µA(x) ≤ µB(x) and νA(x) ≥ νB(x).

We can easily see that ((I⊕I)X ,∪,∩) is a complete distributive lattice with the least element

0̃ and the greatest element 1̃ satisfying DeMorgan′s laws.

Definition 2.4 ([19]). Let δ and δ′ be two Chang′s fuzzy topologies on a nonempty set X.

Then the triple (X, δ, δ′) is called a fuzzy bitopological space.

If τ, τ ′ ∈ ST (X), then we will called the triple (X, τ, τ ′) as a smooth bitopological sapce (of

fuzzy sets) and the ordered pair (τ, τ ′) will be called a smooth bitopology (of fuzzy sets) (in

short, SBTFS) on X in Chang′s sense (See [40], p.324).

Definition 2.5 ([40]). Let (X, (τ, τ ′)) be a smooth bitopological space in Chang′s sense. Then

(X, (τ, τ ′)) is said to be inclusive, if τ ⊂ τ ′.

3. Ordinary intuitionistic smooth topological spaces

In this section, we define an ordinary intuitionistic smooth topological space and obtain some

its properties. Throughout this paper, we denote the set of all subsets [resp. fuzzy subsets] of

a set X as 2X [resp. IX ].

Definition 3.1. Let X be a nonempty set. Then a mapping τ = (µτ , ντ ) : 2X → I⊕I is called

an ordinary intuitionistic smooth topology (in short, oist) on X, if it satisfies the following

axioms: for any A,B ∈ 2X and each {Aα}α∈Γ ⊂ 2X .

(OIST1) τ(φ) = τ(X) = (1, 0),

(OIST2) µτ (A ∩B) ≥ µτ (A) ∧ µτ (B) and ντ (A ∩B) ≤ ντ (A) ∨ ντ (B),

(OIST3) µτ (
⋃
α∈ΓAα) ≥

∧
α∈Γ µτ (Aα) and ντ (

⋃
α∈ΓAα) ≤

∨
α∈Γ ντ (Aα).

The pair (X, τ) is called an ordinary intuitionistic smooth topological space (in short, oists).

We will denote the set of all ordinary intuitionistic smooth topologies on X as OIST (X).

Let 2 = {0, 1} and let τ : 2X → 2 ⊕ 2 satisfy the axioms in Definition 3.1. Since we can

consider as (1, 0) = 1 and (0, 1) = 0, τ ∈ T (X), where T (X) denotes the set of all classical

topologies on X. Moreover, 2X ⊂ IX . Then we can see that T (X) ⊂ OIST (X) ⊂ IST (X).
3
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Remark 3.2. Let (X, τ) be an oists. Then (X,µτ ) and (X, νcτ ) are ordinary smooth topological

spaces. Moreover, (X,µτ , ν
c
τ ) is an inclusive smooth bitopological space, where νcτ = 1− ντ .

Example 3.3. (1) Let X = {a, b, c}. Then 2X = {φ,X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}. We

define the mapping τ : 2X → I ⊕ I as follows:

τ(φ) = τ(X) = (1, 0),

τ({a}) = (0.7, 0.2), τ({b}) = (0.4, 0.5), τ({c}) = (0.6, 0.3),

τ({a, b}) = (0.6, 0.3), τ({b, c}) = (0.8, 0.1), τ({a, c}) = (0.3, 0.7).

Then we can easily see that τ ∈ OIST (X).

(2) Let X be a nonempty set. We define he mapping τφ : 2X → I ⊕ I as follows: for each

A ∈ 2X ,

τφ(A) =

{
(1, 0) if either A = φ or A = X,

(0, 1) otherwise.

Then clearly, τφ ∈ OIST (X).

In this case, τφ [resp. (X, τφ)] will be called the ordinary intuitionistic smooth indiscrete

topology on X [resp. the ordinary intuitionistic smooth indiscrete space].

(3) Let X be a nonempty set. We define he mapping τX : 2X → I ⊕ I as follows: for each

A ∈ 2X ,

τX(A) = (1, 0).

Then clearly, τX ∈ OIST (X).

In this case, τX [resp. (X, τX)] will be called the ordinary intuitionistic smooth discrete

topology on X [resp. the ordinary intuitionistic smooth discrete space].

(4) Let X be a set and let (r, s) ∈ I1 ⊕ I0 be fixed. We define he mapping τ : 2X → I ⊕ I as

follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0) if either A = φ or Ac is finie,

(r, s) otherwise.

Then we can easily see that τ ∈ OIST (X).

In this case, τ will be called the (r, s)-ordinary intuitionistic smooth finite complement topol-

ogy on X and will be denoted by IOSCof(X). IOSCof(X) is of interest only when X is an

infinite set, because if X is finite, then IOSCof(X) = τφ.

(5) Let X be an infinite set and let (r, s) ∈ I1⊕ I0 be fixed. We define he mapping τ : 2X →
I ⊕ I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0) if either A = φ or Ac is countable,

(r, s) otherwise.

Then clearly, τ ∈ OIST (X).

In this case, τ will be called the (r, s)-ordinary intuitionistic smooth countable complement

topology on X and will be denoted by IOSCoc(X).

(6) Let T be the topology generated by S = {(a, b] : a, b ∈ R, a < b} as a subbase, and let

T0 be the family of all open sets of R w.r.t. the usual topology of R. We define the mapping
4
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τ : 2R → I ⊕ I as follows: for each A ∈ IR,

τ(A) =


(1, 0) if A ∈ T0,

(0.6, 0.3) if A ∈ T \ T0,

(0, 1) otherwise.

Then we can easily see that τ ∈ OIST (X).

(7) Let T ∈ T (X). We define the mapping τT : 2X → I ⊕ I as follows : for each A ∈ 2X ,

τT (A) =

{
(1, 0) if A ∈ T,
(0, 1) otherwise.

Then it is easily seen that τT ∈ OIST (X). Moreover, we can see that if T is the classical

indiscrete topology, then τT = τφ and if T is the classical discrete topology, then τT = τX .

Definition 3.4. Let X be a nonempty set. Then a mapping C = (µC , νC) : 2X → I ⊕ I is

called an ordinary intuitionistic smooth cotopology (in short, oisct) on X if it is satisfies the

following conditions: for any A,B ∈ 2X and each {Aα}α∈Γ ⊂ 2X .

(OISCT1) C(φ) = C(X) = (1, 0),

(OISCT2) µC(A ∪B) ≥ µC(A) ∧ µC(B) and νC(A ∪B) ≤ νC(A) ∨ νC(B),

(OISCT3) µC(
⋂
α∈Γ

Aα) ≥
∧
α∈Γ

µC(Aα) and νC(
⋂
α∈Γ

Aα) ≤
∨
α∈Γ

νC(Aα).

The pair (X, C) is called an ordinary intuitionistic smooth cotopological space (in short, oiscts).

Remark 3.5. If I = 2, then we can think that Definition 3.1 also coincides with the known

definition of classical topology.

Just as with ordinary topological spaces, the connection between intuitionistic smooth topolo-

gies and intuitionistic smooth cotopologies is a bijective one, and is given by means of comple-

mentation. Then we have the following result and its proof follows from Definitions 3.1 and

3.4.

Proposition 3.6. We define two mappings f : OIST (X)→ OISCT (X) and g : OISCT (X)→
OIST (X) as follows, respectively:

[f(τ)](A) = τ(Ac), ∀ τ ∈ OIST (X), ∀ A ∈ 2X

and

[g(C)](A) = C(Ac), ∀ C ∈ OISCT (X), ∀ A ∈ 2X .

Then f and g are well-defined. Moreover, g ◦ f = 1OIST (X) and f ◦ g = 1OISCT (X).

Remark 3.7. For each τ ∈ OIST (X) and each C ∈ OISCT (X), let f(τ) = Cτ and g(C) = τC .

Then, from Proposition 3.6, we can see that τCτ = τ and CτC = C.

Definition 3.8. Let τ1 , τ2 ∈ OIST (X) and let C1, C2 ∈ OISCT (X).

(i) We say that τ
1

is finer than τ
2

or τ
2

is coarser than τ
1
, denoted by τ

2
� τ

1
, if τ

2
(A) ≤ τ

1
(A),

i.e., µτ2 (A) ≤ µτ1 (A) and ντ2 (A) ≥ ντ1 (A), for each A ∈ 2X .

(ii) We say that C1 is finer than C2 or C2 is coarser than C1, denoted by C2 � C1, if C2(A) ≤
C1(A), i.e., µC

2
(A) ≤ µC

1
(A) and νC

2
(A) ≥ νC

1
(A), for each A ∈ 2X .

We can easily see that τ
1

is finer than τ
2

if and only if Cτ
1

is finer than Cτ
2
, and (OIST (X),�)

and (OISCT (X),�) are posets, respectively.
5
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From Example 3.3 (2) and (3), it is obvious that τφ is the coarest ordinary intuitionistic

smooth topology on X and τX is the finest ordinary intuitionistic smooth topology on X.

Proposition 3.9. If {τ
α
}α∈Γ ⊂ OIST (X), then

⋂
α∈Γ τα ∈ OIST (X),

where [
⋂
α∈Γ τα ](A) = (

∧
α∈Γ µτα (A),

∨
α∈Γ ντα (A)), ∀ A ∈ 2X .

Proof. Let τ =
⋂
α∈Γ τα and let A ∈ 2X . Since τ

α
∈ IST (X), for each α ∈ Γ, µτα (A)+ντα (A) ≤

1. Then µτα (A) ≤ 1 − ντα (A). Thus
∧
α∈Γ

µτα (A) ≤
∧
α∈Γ

(1 − ντα (A)) = 1 −
∨
α∈Γ

ντα (A). So∧
α∈Γ µτα (A) +

∨
α∈Γ ντα (A) ≤ 1. Hence µτ (A) + ντ (A) ≤ 1 and thus τ : 2X → I ⊕ I is a

mapping. Therefore the condition (OIST1) holds.

Let A,B ∈ 2X . Then

µτ (A ∩B) =
∧
α∈Γ ντα (A ∩B) [By the definition of τ ]

≥
∧
α∈Γ(ντα (A) ∧ ντα (B)) [Since τα ∈ OIST (X)]

= (
∧
α∈Γ ντα(A)) ∧ (

∧
α∈Γ ντα(B))

= ντ (A) ∧ ντ (B) [By the definition of τ ]

and

ντ (A ∩B) =
∨
α∈Γ ντα (A ∩B)

≤
∨
α∈Γ(ντα (A) ∨ ντα (B))

= (
∨
α∈Γ ντα(A)) ∨ (

∨
α∈Γ ντα(B))

= ντ (A) ∨ ντ (B).

So the condition (OIST2) holds.

Now let {Aj}j∈J ⊂ 2X . Then

µτ (
⋃
j∈J Aj) =

∧
α∈Γ µτα (

⋃
j∈J Aj) [By the definition of τ ]

≥
∧
α∈Γ(

∧
j∈J µτα (Aj)) [Since τ

α
∈ OIST (X)]

=
∧
j∈J(

∧
α∈Γ µτα (Aj))

=
∧
j∈J [

⋂
α∈Γ µτα ](Aj) [By the definition of τ ]

=
∨
j∈J µτ (Aj)

and

ντ (
⋃
j∈J Aj) =

∨
α∈Γ ντα (

⋃
j∈J Aj) [By the definition of τ ]

≤
∨
α∈Γ(

∨
j∈J ντα (Aj)) [Since τ

α
∈ OIST (X)]

=
∨
j∈J(

∨
α∈Γ ντα (Aj))

=
∨
j∈J [

⋃
α∈Γ ντα ](Aj) [By the definition of τ ]

=
∨
j∈J ντ (Aj).

Thus the condition (OIST3) holds. This completes the proof. �

From Definition 3.8 and Proposition 3.9, we have the following.

Proposition 3.10. (OIST (X),�) is a meet complete lattice with the least element τφ and the

greatest element τX .

Definition 3.11. Let (X, τ) be an oists and let (λ, µ) ∈ I ⊕ I. We define [τ ](λ,µ) and [τ ]∗(λ,µ)

as follows, respectively:

(i) [τ ](λ,µ) = {A ∈ 2X : µτ (A) ≥ λ, ντ (A) ≤ µ},
(ii) [τ ]∗(λ,µ) = {A ∈ 2X : µτ (A) > λ, ντ (A) < µ}.

6
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[τ ](λ,µ) [resp. [τ ]∗(λ,µ)] is called the (λ, µ)-level [resp. strong (λ, µ)-level] of τ . If (λ, µ) = (0, 1),

then [τ ](0,1) = 2X , i.e., [τ ](0,1) is the classical discrete topology on X and if (λ, µ) = (1, 0), then

[τ ]∗(1,0) = ∅. Moreover, we can easily see that for any (λ, µ) ∈ I ⊕ I, [τ ]∗(λ,µ) ⊂ τ(λ,µ).

Lemma 3.12. Let τ ∈ OIST (X).

(1) For each (λ, µ) ∈ I ⊕ I, [τ ](λ,µ) ∈ T (X).

(2) If (λ1, µ1) ≤ (λ2, µ2
) in I ⊕ I, then [τ ](λ2,µ2

) ⊂ [τ ](λ1,µ1
).

(3) For each (λ, µ) ∈ I0 ⊕ I1, [τ ](λ,µ) =
⋂

(λ′,µ′)<(λ,µ)

[τ ](λ′,µ′).

(1)
′

For each (λ, µ) ∈ I1 ⊕ I0, [τ ]∗(λ,µ) ∈ T (X).

(2)
′

If (λ1, µ1
) ≤ (λ2, µ2

) in I ⊕ I, [τ ]∗(λ2,µ2
) ⊂ [τ ]∗(λ1,µ1

).

(3)
′

For each (λ, µ) ∈ I1 ⊕ I0, [τ ]∗(λ,µ) =
⋃

(λ′,µ′)>(λ,µ)

[τ ]∗(λ′,µ′).

Proof. The proofs of (1), (1)
′
, (2) and (2)

′
are obvious from Definitions 3.1 and 3.10.

(3) From (2), {[τ ](λ,µ)}(λ,µ)∈I0⊕I1 is a descending family of classical topologies on X. Then

clearly, [τ ](λ,µ) ⊂
⋂

(λ′,µ′)<(λ,µ)[τ ](λ′,µ′), for each (λ, µ) ∈ I0 ⊕ I1.

Suppose A /∈ [τ ](λ,µ). Then µτ (A) < λ or ντ (A) > µ. Thus

∃ s ∈ I0 such that µτ (A) < s < λ

or

∃ t ∈ I1 such that ντ (A) > t > µ.

So A /∈ [τ ](s,t), for some (s, t) < (λ, µ), i.e., A /∈
⋂

(λ′,µ′)<(λ,µ)

[τ ](λ′,µ′).

Therefore
⋂

(λ′,µ′)<(λ,µ)

τ(λ′,µ′) ⊂ τ(λ,µ). Hence [τ ](λ,µ) =
⋂

(λ′,µ′)<(λ,µ)

[τ ](λ′,µ′).

The proof of (3)
′

is similar to (3). �

Remark 3.13. From (1) and (2) in Lemma 3.12, we can see that for each τ ∈ OIST (X),

{[τ ](λ,µ)}(λ,µ)∈I⊕I is a family of descending classical topologies called the (λ, µ)-level classical

topologies on X w.r.t. τ .

The following is the immediate result of Lemma 3.12.

Corollary 3.14. Let (X, τ) be an oists. Then

[τ ](λ,1−λ) =
⋂
λ′<λ

[τ ](λ′,1−λ′), ∀ λ ∈ I0.

Lemma 3.15. (1) Let {T(λ,µ)}(λ,µ)∈I⊕I be a descending family of classical topologies on X

such that T(0,1) is the classical discrete topology on X. We define the mapping τ : 2X → I ⊕ I
as follows: for each A ∈ 2X ,

τ(A) = (
∨

A∈T(λ,µ)

λ,
∧

A∈T(λ,µ)

µ).

Then τ ∈ OIST (X).

(2) If T(λ,µ) =
⋂

(λ′,µ′)<(λ,µ) δ(λ′,µ′), for each (λ, µ) ∈ I0 ⊕ I1, then [τ ](λ,µ) = T(λ,µ).

(3) If T(λ,µ) =
⋃

(λ′,µ′)>(λ,µ) T(λ′,µ′), for each (λ, µ) ∈ I1 ⊕ I0, then [τ ]∗(λ,µ) = T(λ,µ).

Proof. The proof is similar to Lemma 3.9 in [28]. �
7
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The following is the immediate result of Lemma 3.15.

Corollary 3.16. Let {T(λ,1−λ)}λ∈I0 be a descending family of classical topologies on X such

that T(0,1) is the classical discrete topology on X. We define the mapping τ : 2X → I ⊕ I as

follows: for each A ∈ 2X ,

τ(A) = (
∨

A∈T(λ,1−λ)

λ,
∧

A∈T(µ,1−µ)

µ).

Then

(1) τ ∈ OIST (X),

(1) [τ ](λ,1−λ) =
⋂
λ′<λ T(λ′,1−λ′) = T(λ,µ), ∀ λ ∈ I0.

From Lemmas 3.12 and 3.15, we have the following result.

Corollary 3.17. Let τ ∈ OIST (X) and let [τ ](λ,µ) be the (λ, µ)-level classical topology on X

w.r.t. τ . We define the mapping η : 2X → I ⊕ I as follows: for each A ∈ 2X ,

η(A) = (
∨

A∈[τ ](λ,µ)

λ,
∧

A∈[τ ](λ,µ)

µ).

Then η = τ.

The fact that an ordinary intuitionistic smooth topological space fully determined by it′s

decomposition in classical topologies is restated in the following Corollary.

Corollary 3.18. Let τ1 , τ2 ∈ IST (X). Then τ1 = τ2 if and only if [τ1 ](λ,µ) = [τ2 ](λ,µ), for each

(λ, µ) ∈ I ⊕ I, or, alternatively, if and only if [τ
1
]∗(λ,µ) = [τ

2
]∗(λ,µ), for each (λ, µ) ∈ I ⊕ I.

Remark 3.19. In a similar way, we can construct an ordinary intuitionistic smooth cotopology

C on a set X, by using the (λ, µ)-levels,

[C](λ,µ) = {A ∈ IX : µC (A) ≥ λ and νC (A) ≤ µ}

and

[C]∗(λ,µ) = {A ∈ IX : µC (A) > λ and νC (A) < µ},

for each (λ, µ) ∈ I ⊕ I.

Definition 3.20. Let T ∈ T (X) and let τ ∈ OIST (X). Then τ is said to the compatible with

T , if T = S(τ), where S(τ) = {A ∈ 2X : µτ (A) > 0 and ντ (A) < 1}.

Example 3.21. (1) Let τφ be the ordinary intuitionistic smooth indiscrete topology on a

nonempty set X and let T0 be the classical indiscrete topology on X. Then clearly,

S(τφ) = {A ∈ 2X : µτ (A) > 0 and ντ (A) < 1} = {φ,X} = T0.

Thus τφ is compatible with T0.

(2) Let τX be the ordinary intuitionistic smooth discrete topology on a nonempty set X and

let T1 be the classical discrete topology on X. Then clearly,

S(τX) = {A ∈ 2X : µτ (A) > 0 and ντ (A) < 1} = 2X = T1.

Thus τX is compatible with T1.
8
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(3) Let X be a nonempty set and let (r, s) ∈ I0 ⊕ I1 be fixed. We define he mapping

τ : 2X → I ⊕ I as follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0) if either A = φ or A = X,

(r, s) otherwise.

Then clearly, τφ ∈ OIST (X) and τ is compatible with T1.

Furthermore, every classical topology can be considered as an ordinary intuitionistic smooth

topology in the sense of the following result.

Proposition 3.22. Let (X,T ) be a classical topological space and and let (λ, µ) ∈ I0 ⊕ I1 be

fixed. Then there exists T (λ,µ) ∈ OIST (X) such that T (λ,µ) is compatible with T . Moreover,

[T (λ,µ)](λ,µ) = T .

In this case, T (λ,µ) is called (λ, µ)-th ordinary intuitionistic smooth topology on X and

(X,T (λ,µ)) is called a (λ, µ)-th ordinary intuitionistic smooth topological space.

Proof. Let (λ, µ) ∈ I0 ⊕ I1 be fixed. and we the mapping T (λ,µ) : 2X → I ⊕ I as follows: for

each A ∈ 2X ,

T (λ,µ)(A) =


(1, 0) if either A = φ or A = X,

(λ, µ) if A ∈ T \ {φ,X},
(0, 1) otherwise.

Then we can easily see that T (λ,µ) ∈ OIST (X) and [T (λ,µ)](λ,µ) = T . Moreover, by the

definition of T (λ,µ),

S(T (λ,µ) = {A ∈ 2X : µT (λ,µ)(A) > 0 and νT (λ,µ)(A) < 1} = T.

Thus T (λ,µ) is compatible with T . �

Proposition 3.23. Let (X,T ) be a classical topological space and let C(T ) be the set of all

oists on X compatible with T . Then there is a one-to-one correspondence between C(T ) and

the set (I0 ⊕ I1)T̃ , where T̃ = T \ {φ,X}.

Proof. We define the mapping F : (I0 ⊕ I1)T̃ → C(T ) as follows: for each f ∈ (I0 ⊕ I1)T̃ ,

F (f) = τf ,

where τ
f

: 2X → I ⊕ I is the mapping defined by: for each A ∈ 2X ,

τ
f
(A) =


(1, 0) if either A = φ or A = X,

f(A) if A ∈ T̃ ,
(0, 1) otherwise.

Then we easily see that τ
f
∈ C(T ).

Now we define the mapping G : C(T )→ (I0 ⊕ I1)T̃ as follows: for each τ ∈ C(T ),

G(τ) = fτ ,

where fτ : T̃ → I0 ⊕ I1 is the mapping defined by: for each A ∈ T̃ ,

fτ (A) = τ(A).

Then clearly, fτ ∈ (I0 ⊕ I1)T̃ .
9
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Furthermore, we can see that F ◦G = idC(T ) and G◦F = id(I0⊕I1)T̃ . Thus C(T ) is equipotent

to (I0 ⊕ I1)T̃ . This completes the proof. �

Proposition 3.24. Let (X, τ) be an oists and let A ⊂ X. We define the mapping τA : 2A →
I ⊕ I as follows: for each B ∈ 2A,

τA(B) = (µτA(B), ντA(B)) = (
∨

C∈2X , B=C∩A

µτ (C),
∧

C∈2X , B=C∩A

ντ (C)).

Then τA ∈ OIST (A), and µτA(B) ≥ µτ (B) and ντA(B) ≤ ντ (B), for each B ∈ 2A.

In this case, (A, τA) is called an ordinary intuitionistic smooth subspace of (X, τ) and τA is

called the induced ordinary intuitionistic smooth topology on A by τ.

Proof. For each B ∈ 2A, let B = A ∩ C and C ∈ 2X . Since τ ∈ OIST (X), µτ (C) ≤ 1− ντ (C).

Thus ∨
C∈2X , B=A∩C

µτ (C) ≤
∨

C∈2X , B=A∩C

(1− ντ (C)) = 1−
∧

C∈2X , B=A∩C

ντ (C).

So µτA(B) ≤ 1− ντA(B). Hence τA : 2A → I ⊕ I is a mapping.

It is obvious that the condition (OIST1) holds, i.e., τA(φ) = τA(A) = (1, 0).

Let B1, B2 ∈ 2A. Then, by proof of Proposition 5.1 in [27], µτA(B1∩B2) ≥ µτA(B1)∧µτA(B2).

Let us show that ντA(B1 ∩B2) ≤ ντA(B1) ∨ ντA(B2). Then

ντA(B1) ∨ ντA(B2) = (
∧
C1∈2X , B1=A∩C1

ντ (C1)) ∨ (
∧
C2∈2X , B2=A∩C2

ντ (C2))

=
∧
C1, C1∈2X , B1∩B2=A∩(C1∩C2)[ντA(C1) ∨ ντA(C2)]

≥
∧
C1, C1∈2X , B1∩B2=A∩(C1∩C2) ντA(C1 ∩ C2)

= ντA(B1 ∩B2).

Thus the condition (OIST2) holds.

Now let {Bα}α∈Γ ⊂ 2A. Then, by proof of Proposition 5.1 in [27], µτA(
⋃
α∈ΓBα) ≥

∧
α∈Γ µτA(Bα).

On the other hand,

ντA(
⋃
α∈ΓBα) =

∧
Cα∈2X , (

⋃
α∈Γ Cα)∩A=

⋃
α∈Γ Bα

ντ (
⋃
α∈Γ Cα)

≤
∧
Cα∈2X , (

⋃
α∈Γ Cα)∩A=

⋃
α∈Γ Bα

[
∧
α∈Γ ντ (Cα)]

=
∧
α∈Γ[

∧
Cα∈2X , (

⋃
α∈Γ Cα)∩A=

⋃
α∈Γ Bα

ντ (Cα)]

=
∧
α∈Γ µτA(Bα).

Thus the condition (OIST3) holds. So τA ∈ OIST (A).

Furthermore, we can easily see that µτA(B) ≥ µτ (B) and ντA(B) ≤ ντ (B), for each B ∈ 2A.

This completes the proof. �

The following is the immediate result of Proposition 3.24.

Corollary 3.25. Let (A, τA) be an ordinary intuitionistic smooth subspace of (X, τ) and let

B ∈ 2A.

(1) CA(B) = (
∨
C∈2X ,B=B∩A µC(C),

∧
C∈2X ,B=B∩A νC(C)), where CA(B) = τA(Bc).

(2) If Z ⊂ Y ⊂ X, then τ
Z

= (τ
Y

)
Z
.

4. Ordinary intuitionistic smooth neighborhood structures of a point

Definition 4.1. Let (X, τ) be an oists and let x ∈ X. Then a mapping Nx : 2X → I ⊕ I is

called the ordinary intuitionistic smooth neighborhood system of x, if for each A ∈ 2X ,

A ∈ Nx := ∃B(B ∈ τ) ∧ (x ∈ B ⊂ A)),
10
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i.e.,

[A ∈ Nx] = Nx(A) = (µNx(A), νNx(A)) = (
∨

x∈B⊂A
µτ (B),

∧
x∈B⊂A

ντ (B)).

Lemma 4.2. Let (X, τ) be an oists and let A ∈ 2X . Then∧
x∈A

∨
x∈B⊂A

µτ (B) = µτ (A)

and ∨
x∈A

∧
x∈B⊂A

ντ (B) = ντ (A).

Proof. By Lemma 3.1 in [43], it is obvious that
∧
x∈A

∨
x∈B⊂A µτ (B) = µτ (A).

On the other hand, it is clear that
∨
x∈A

∧
x∈B⊂A ντ (B) ≥ ντ (A). Now let Bx = {B ∈ 2X :

x ∈ B ⊂ A} and let f ∈ Πx∈ABx. Then clearly,
⋃
x∈A f(x) = A. Thus∨

x∈A
ντ (f(x)) ≤ ντ (

⋃
x∈A

f(x)) = ντ (A).

So ∨
x∈A

∧
x∈B⊂A

ντ (B) =
∧

f∈Πx∈A

∨
x∈A

ντ (f(x)) ≤ ντ (A).

Hence
∨
x∈A

∧
x∈B⊂A ντ (B) = ντ (A). �

Theorem 4.3. Let (X, τ) be an oists, let A ∈ 2X and let x ∈ X. Then

� (A ∈ τ)↔ ∀(x ∈ A→ ∃B(B ∈ Nx) ∧ (B ⊂ A)),

i.e.,

[A ∈ τ ] = [∀(x ∈ A→ ∃B(B ∈ Nx) ∧ (B ⊂ A)],

i.e.,

[A ∈ τ ] = (µτ (A), ντ (A)) = (
∧
x∈A

∨
B⊂A

µNx(B),
∨
x∈A

∧
B⊂A

νNx(B)).

Proof. From Theorem 3.1 in [43], it is clear that µτ (A) =
∧
x∈A

∨
B⊂A µNx(B).

On the other hand,

ντ (A) =
∨
x∈A

∧
x∈C⊂A ντ (C) [By Lemma 4.2]

=
∨
x∈A

∧
B⊂A

∧
x∈C⊂B ντ (C)

=
∨
x∈A

∧
B⊂A νNx(B). [By Definition 4.1]

This completes the proof. �

Definition 4.4. A ∈ (I ⊕ I)X is said to be normal, if there is x ∈ X such that A(x) = (1, 0).

We will denote the set of all normal intuitionistc fuzzy subsets of 2X as (I ⊕ I)2X

N .

From the following result, we can see that an ordinary intuitionistic smooth neighborhood

system has the same properties in a classical neighborhood system.

Theorem 4.5. Let (X, τ) be an oists and let N : X → (I ⊕ I)2X

N be the mapping given by

N (x) = Nx, for each x ∈ X. Then N has the following properties:

(1) for any x ∈ X, A ∈ 2X , � A ∈ Nx → x ∈ A,

(2) for any x ∈ X, A,B ∈ 2X , � (A ∈ Nx) ∧ (B ∈ Nx)→ A ∩B ∈ Nx,

(3) for any x ∈ X, A,B ∈ 2X , � (A ⊂ B)→ (A ∈ Nx → B ∈ Nx),
11
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(4) for any x ∈ X, � (A ∈ Nx)→ ∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈ Ny)).

Conversely, if a mapping N : X → (I ⊕ I)2X

N satisfies the above properties (2) and (3), then

there is an ordinary intuitionistic smooth topology τ : 2X → (I ⊕ I) on X defined as follows:

for each A ∈ 2X ,

A ∈ τ := ∀x(x ∈ A→ A ∈ Nx),

i.e.,

[A ∈ τ ] = τ(A) = (µτ (A), ντ (A)) = (
∧
x∈A

µNx(A),
∨
x∈A

νNx(A)).

In particular, if N satisfies the above properties (1) and (4) also, then for each x ∈ X, Nx
is an ordinary intuitionistic smooth neighborhood system of x with respect to τ .

Proof. (1) Since A ∈ 2X , A = (χA, χAc) ∈ (I ⊕ I)X . Then

[x ∈ A] = (χA(x), χAc(x)) = (1, 0).

On the other hand, [A ∈ Nx] = (
∨
x∈C⊂A µτ (C),

∧
x∈C⊂A ντ (C)). Clearly,

∨
x∈C⊂A µτ (C) >

0 and
∧
x∈C⊂A ντ (C) < 1. Thus [A ∈ Nx] ≤ [x ∈ A].

(2) By the definition of Nx, [A ∩ B ∈ Nx] = (
∨
x∈C⊂A∩B µτ (C),

∧
x∈C⊂A∩B ντ (C)). From

the proof of Theorem 3.2 (2) in [43], it is obvious that µNx(A ∩B) ≥ µNx(A) ∧ µNx(B). Then

it is sufficient to show that νNx(A ∩B) ≤ νNx(A) ∨ νNx(B). On the other hand,

νNx(A ∩B) =
∧
x∈C⊂A∩B ντ (C) =

∧
x∈C1⊂A, x∈C2⊂A ντ (C1 ∩ C2)

≤
∧
x∈C1⊂A, x∈C2⊂A(ντ (C1) ∨ ντ (C2))

=
∧
x∈C1⊂A ντ (C1) ∨

∧
x∈C2⊂A ντ (C2)

= νNx(A) ∨ νNx(B).

Thus [A ∩B ∈ Nx] ≥ [(A ∈ Nx) ∧ (B ∈ Nx)].

(3) The proof is immediate.

(4) It is clear that

[∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈ Ny))]

= (
∨
C⊂A[µNx(C) ∧

∧
y∈C µNy (C)],

∧
C⊂A[νNx(C) ∨

∨
y∈C νNy (C)]).

Then, by the proof of Theorem 3.2 (4) in [43], it is clear that∨
C⊂A

[µNx(C) ∧
∧
y∈C

µNy (C)] ≥ µNx(A).

From Lemma 3.1,
∨
y∈C νNy (C) =

∨
y∈C

∧
y∈D⊂C ντ (D) = ντ (C). Thus∧

C⊂A[νNx(C) ∨
∨
y∈C νNy (C)] =

∧
C⊂A[νNx(C) ∨ ντ (C)] =

∧
C⊂A ντ (C)

≤
∧
x∈C⊂A ντ (C) = νNx(A).

So [∃C((C ∈ Nx) ∧ (C ⊂ A) ∧ ∀y(y ∈ C → C ∈ Ny))] ≥ [A ∈ Nx].

Conversely suppose N satisfies the above properties (2) and (3) and let

τ(A) = (
∧
x∈A

µNx(A),
∨
x∈A

νNx(A)).

Then clearly, τ(φ) = (1, 0). Since Nx is intuitionistic fuzzy normal, there is A0 ∈ 2X such that

Nx(A0) = (1, 0). Thus Nx(X) = (1, 0). So

τ(X) = (
∧
x∈X

µNx(X),
∨
x∈X

νNx(X)) = (1, 0).

Hence τ satisfies the axiom (OIST1).
12
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From the proof of 3.2 in [43], it is clear that µτ (A ∩B) ≥ µτ (A) ∧ µτ (B).

On the other hand,

ντ (A ∩B) =
∨
x∈A∩B νNx(A ∩B) ≤

∨
x∈A∩B(νNx(A) ∨ νNx(B))

=
∨
x∈A∩B νNx(A) ∨

∨
x∈A∩B νNx(B)

≤
∨
x∈A νNx(A) ∨

∨
x∈B νNx(B)

= ντ (A) ∨ ντ (B).

Then τ satisfies the axiom (OIST2). Moreover, we can easily see that τ satisfies the axiom

(OIST3). Thus τ ∈ OIST (X).

Now suppose N satisfies additionally the above properties (1) and (4). Then, from the proof

of 3.2 in [43], µNx(A) =
∨
x∈B⊂A µτ (B), for each x ∈ X and each A ∈ 2X .

Let x ∈ X and let A ∈ 2X . Then, by the property (4),

νNx(A) ≥
∧
C⊂A

[νNx(C) ∨
∨
y∈C

νNy (C)].

From the property (1), νNx(C) = 1, for any x 6∈ C. Thus

νNx(A) ≥
∧
x∈C⊂A[νNx(C) ∨

∨
y∈C νNy (C)]

≥
∧
x∈C⊂A

∨
y∈C νNy (C)

=
∧
x∈B⊂A ντ (B).

Now suppose x ∈ C ⊂ A. Then clearly,
∨
y∈C νNy (C) ≥ νNx(C) ≥ νNx(A). Thus∧

x∈B⊂A
ντ (B) =

∧
x∈C⊂A

∨
y∈C

νNy (C) ≥ νNx(A).

So νNx(A) =
∧
x∈B⊂A ντ (B). This completes the proof. �

5. Ordinary intuitionistic smooth bases and subbases

Definition 5.1. Let (X, τ) be an oists and let B : 2X → I⊕I be a mapping such that µB ≤ µτ
and νB ≥ ντ . Then B is called an ordinary intuitionistic smooth base for τ , if for each A ∈ 2X ,

µτ (A) =
∨

{Bα}α∈Γ⊂2X , A=
⋃
α∈Γ Bα

∧
α∈Γ

µB(Bα)

and

ντ (A) =
∧

{Bα}α∈Γ⊂2X , A=
⋃
α∈Γ Bα

∨
α∈Γ

νB(Bα).

Example 5.2. (1) Let X be a set and let B : 2X → I ⊕ I be the mapping defined by:

B({x}) = (1, 0), ∀x ∈ X.

Then B is an ordinary intuitionistic smooth base for τX .

(2) Let X = {a, b, c}, let (r, s) ∈ I1 ⊕ I0 be fixed and let B : 2X → I ⊕ I be the mapping as

follows: for each A ∈ 2X ,

τ(A) =

{
(1, 0) if either A = {a, b} or {b, c} or X,

(r, s) otherwise.

Then B is not an ordinary intuitionistic smooth base for an oist on X.
13
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Assume that B is an ordinary intuitionistic smooth base for an oist τ on X. Then clearly,

B ≤ τ . Moreover, τ({a, b}) = τ({b, c}) = (0, 1). Thus

µτ ({b}) = µτ ({a, b} ∩ τ({b, c}) ≥ µτ ({a, b} ∧ µτ ({b, c} = 1

and

ντ ({b}) = ντ ({a, b} ∩ τ({b, c}) ≤ ντ ({a, b} ∧ ντ ({b, c} = 0.

So τ({b}) = (1, 0). On the other hand, by the definition of B,

µτ ({b}) =
∨

{Aα}α∈Γ⊂2X , {b}=
⋃
α∈Γ Aα

∧
α∈Γ

µB(Aα) = r

and

ντ ({b}) =
∧

{Aα}α∈Γ⊂2X , {b}=
⋃
α∈Γ Aα

∨
α∈Γ

νB(Aα) = s.

This is a contradiction. Hence B is not an ordinary intuitionistic smooth base for an oist on X.

Theorem 5.3. Let (X, τ) be an oists and let B : 2X → I ⊕ I be a mapping such that B ≤ τ .

Then B is an ordinary intuitionistic smooth base for τ if and only if for each x ∈ X and each

A ∈ 2X , µNx(A) ≤
∨
x∈B⊂A µB(B) and νNx(A) ≥

∧
x∈B⊂A νB(B).

Proof. (⇒): Suppose B is an ordinary intuitionistic smooth base for τ . Let x ∈ X and let

A ∈ 2X . Then, by Theorem 4.4 in [27], it is obvious that µNx(A) ≤
∨
x∈B⊂A µB(B).

On the other hand,

νNx(A) =
∧
x∈B⊂A ντ (B) [By Definition 4.1]

=
∧
x∈B⊂A

∧
{Bα}α∈Γ⊂2X , B=

⋃
α∈Γ Bα

∨
α∈Γ νB(Bα). [By Definition 4.2]

If x ∈ B ⊂ A and B =
⋃
α∈ΓBα, then there is α0 ∈ Γ such that x ∈ Bα0

. Thus∨
α∈Γ

νB(Bα) ≥ νB(Bα0
) ≥

∧
x∈B⊂A

νB(B).

So νNx(A) ≥
∧
x∈B⊂A νB(B). Hence the necessary condition holds.

(⇐): Suppose the necessary condition holds. Then, by Theorem 4.4 in [27], it is clear that

µτ (A) =
∨

{Bα}α∈Γ⊂2X , A=
⋃
α∈Γ Bα

∧
α∈Γ

µB(Bα).

Let A ∈ 2X . Suppose A =
⋃
α∈ΓBα and {Bα} ⊂ 2X . Then

ντ (A) ≤
∨
α∈Γ ντ (Bα) [By the axiom (IOST3)]

≤
∨
α∈Γ νB(Bα). [Since B ≤ τ ]

Thus

(5.3.1) ντ (A) ≤
∧

{Bα}α∈Γ⊂2X , A=
⋃
α∈Γ Bα

∨
α∈Γ

νB(Bα).

On the other hand,

ντ (A) =
∨
x∈A

∧
x∈B⊂A ντ (B) [By Lemma 4.2]

=
∨
x∈A νNx(A) [By Definition 4.1]

=
∨
x∈A

∧
x∈B⊂A νB(B) [By the hypothesis]

14
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=
∧
f∈Πx∈ABx

∨
x∈A νB(f(x)),

where Bx = {B ∈ 2X : x ∈ B ⊂ A}. Furthermore, A =
⋃
x∈A f(x), for each f ∈ Πx∈ABx. So∧

f∈Πx∈ABx

∨
x∈A

νB(f(x)) =
∧

{Bα}α∈Γ⊂2X , A=
⋃
α∈Γ Bα

∨
α∈Γ

νB(Bα).

Hence

(5.3.2) ντ (A) ≥
∧

{Bα}α∈Γ⊂2X , A=
⋃
α∈Γ Bα

∨
α∈Γ

νB(Bα).

By (5.3.1) and (5.3.2), ντ (A) =
∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ νB(Bα). Therefore B is an ordi-

nary intuitionistic smooth base for τ . �

Theorem 5.4. Let B : 2X → I ⊕ I be a mapping. Then B is an ordinary intuitionistic smooth

base for some oist τ on X if and only if it has the following conditions:

(1) (
∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ µB(Bα),

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ νB(Bα)) = (1, 0),

(2) for any A1, A2 ∈ 2X and each x ∈ A1 ∩A2,

µB(A1) ∧ µB(A2) ≤
∨

x∈A⊂A1∩A2

µB(A)

and

νB(A1) ∨ νB(A2) ≥
∧

x∈A⊂A1∩A2

νB(A).

In fact, τ : 2X → I ⊕ I is the mapping defined as follows: for each A ∈ 2X ,

µτ (A) =

{
1 if A = φ,∨
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∧
α∈Γ µB(Bα) otherwise

and

ντ (A) =

{
0 if A = φ,∧
{Bα}α∈Γ⊂2X , A=

⋃
α∈Γ Bα

∨
α∈Γ νB(Bα) otherwise.

In this case, τ is called the ordinary intuitionistic smooth topology on X induced by B.

Proof. (⇒): Suppose B is an ordinary intuitionistic smooth base for some oist τ on X. Then

by Definition 5.1 and the axiom (OIST1),

(
∨

{Bα}α∈Γ⊂2X , X=
⋃
α∈Γ Bα

∧
α∈Γ

µB(Bα),
∧

{Bα}α∈Γ⊂2X , X=
⋃
α∈Γ Bα

∨
α∈Γ

νB(Bα)) = τ(X) = (1, 0).

Thus the condition (1) holds.

Let A1, A2 ∈ 2X and let x ∈ A1 ∩ A2. Then, by the proof of Theorem 4.2 in [43], it is

obvious that µB(A1) ∧ µB(A2) ≤
∨
x∈A⊂A1∩A2

µB(A). On the other hand,

νB(A1) ∨ νB(A2) ≥ ντ (A1) ∨ ντ (A2) ≥ ντ (A1 ∩A2) ≥ νNx(A1 ∩A2) ≥
∧

x∈A⊂A1∩A2

νB(A).

Thus νB(A1) ∨ νB(A2) ≥
∧
x∈A⊂A1∩A2

νB(A). So the condition (2) holds.

(⇐): Suppose the necessary conditions (1) and (2) are satisfied. Then, by the proof of

Theorem 4.2 in [43], we can see that the followings hold:

µτ (X) = µτ (φ) = 1,
15
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µτ (A ∩B) ≥ µτ (A) ∧ µτ (B), for any A, B ∈ 2X

and

µτ (
⋃
α∈ΓAα) ≥

∧
α∈Γ µτ (Aα), for each {Aα}α∈Γ ⊂ 2X .

From the definition of τ , it is obvious that ντ (X) = ντ (φ) = 0. Thus τ satisfies the axiom

(OIST1).

Let {Aα}α∈Γ ⊂ 2X and let Bα = {{Bδα : δα ∈ Γα} :
⋃
δα∈Γα

Bδα = Aα}. Let f ∈ Πα∈ΓBα.

Then clearly,
⋃
α∈Γ

⋃
Bδα∈f(α)Bδα =

⋃
α∈ΓAα. Thus

ντ (
⋃
α∈ΓAα) =

∧⋃
δ∈Γ Bδ=

⋃
α∈Γ Aα

∨
δ∈Γ νB(Bδ)

≤
∧
f∈Πα∈ΓBα

∨
α∈Γ

∨
Bδα∈f(α) νB(Bδα)

=
∨
α∈Γ

∧
{Bδα :δα∈Γα}∈Bα

∨
δα∈Γα

νB(Bδα)

=
∨
α∈Γ ντ (Aα). So τ satisfies the axiom (OIST3).

Now let A, B ∈ 2X and suppose ντ (A) < t and ντ (B) < t. Then there are {Aα1
: α1 ∈ Γ1}

and {Bα2 : α2 ∈ Γ2} such that
⋃
α1∈Γ1

Aα1 = A,
⋃
α2∈Γ2

Bα2 = B and νB(Aα1) < t for each

α1 ∈ Γ1, νB(Bα2) < t for each α2 ∈ Γ2. Let x ∈ A ∩B. Then there are α1x ∈ Γ1 and α2x ∈ Γ2

such that x ∈ Aα1x
∩Bα2x

. Thus, from the assumption,

t > νB(Aα1x
) ∨ νB(Bα2x

) ≥
∧

x∈C⊂Aα1x∩Bα2x

νB(C).

Moreover, there is Cx such that x ∈ Cx ⊂ Aα1x
∩ Bα2x

⊂ A ∩ B and νB(Cx) < t. Since⋃
x∈A∩B Cx = A ∩B, we obtain

t ≥
∨

x∈A∩B
νB(Cx) ≥

∧
⋃
α∈Γ Bα=A∩B

∨
α∈Γ

νB(Bα) = ντ (A ∩B).

Now let k = ντ (A) ∨ ντ (B) and let n be any natural number. Then ντ (A) < k + 1�n and

ντ (B) < k + 1�n. Thus ντ (A ∩ B) ≤ k + 1�n. So ντ (A ∩ B) ≤ k = ντ (A) ∨ ντ (B). Hence τ

satisfies the axiom (OIST2). This completes the proof. �

Example 5.5. (1) Let X = {a, b, c} and let (r, s) ∈ I1 ⊕ I0 be fixed. We define the mapping

B : 2X → I ⊕ I as follows: for each A ∈ 2X ,

µB(A) =

{
1 if A = {b} or {a, b} or {b, c}
r otherwise

and

νB(A) =

{
0 if A = {b} or {a, b} or {b, c}
s otherwise.

Then we can easily see that B satisfies the conditions (1) and (2) in Theorem 5.4. Thus B is

an ordinary intuitionistic smooth base for an oist τ on X. In fact, τ : 2X → I ⊕ I as follows:

for each A ∈ 2X ,

µτ (A) =

{
1 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
r otherwise

and

ντ (A) =

{
0 if A ∈ {φ, {b}, {a, b}, {b, c}, X}
s otherwise.
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(2) Let (r, s) ∈ I1 ⊕ I0 be fixed. We define the mapping B : 2R → I ⊕ I as follows: for each

A ∈ 2R,

µB(A) =

{
1 if A = (a, b), for a, b ∈ R with a ≤ b
r otherwise

and

νB(A) =

{
0 if A = (a, b), for a, b ∈ R with a ≤ b
s otherwise.

Then it can be easily seen that B satisfies the conditions (1) and (2) in Theorem 5.4. Thus B
is an ordinary intuitionistic smooth base for an oist τ(r,s) on R.

In this case, τ(r,s) will be called the (r, s)-ordinary intuitionistic smooth usual topology on

R.

(3) Let (r, s) ∈ I1 ⊕ I0 be fixed. We define the mapping B : 2R → I ⊕ I as follows: for each

A ∈ 2R,

µB(A) =

{
1 if A = [a, b), for a, b ∈ R with a ≤ b
r otherwise

and

νB(A) =

{
0 if A = [a, b), for a, b ∈ R with a ≤ b
s otherwise.

Then we can easily see that B satisfies the conditions (1) and (2) in Theorem 5.4. Thus B is

an ordinary intuitionistic smooth base for an oist τl on R.

In this case, τl will be called the (r, s)-ordinary intuitionistic smooth lower-limit topology on

R.

Definition 5.6. Let τ1, τ2 ∈ OIST (X), and let B1 and B1 be ordinary intuitionistic smooth

bases for τ1 and τ2, respectively. Then B1 and B1 are equivalent, if τ1 = τ2.

Theorem 5.7. Let τ1, τ2 ∈ OIST (X), and let B1 and B1 be ordinary intuitionistic smooth

bases for τ1 and τ2, respectively. Then τ1 is finer than τ2, i.e., µτ1 ≤ µτ2 and ντ1 ≥ ντ2 if

and only if for each x ∈ X and each A ∈ 2X , if x ∈ A, then µB1
(A) ≤

∨
x∈B⊂A µB2

(B) and

νB1
(A) ≥

∧
x∈B⊂A νB2

(B).

Proof. (⇒): Suppose τ1 is finer than τ2. For each x ∈ X, let x ∈ A ∈ 2X . Then, by Theorem

4.8 in [27], µB1
≤

∨
x∈B⊂A µB2

(B). On the other hand,

νB1
(A) ≥ ντ1(A) [Since B1 is an ordinary intuitionistic smooth base for τ1]

≥ ντ2(A) [By the hypothesis]

=
∧
{Aα}α∈Γ⊂2X , A=

⋃
α∈Γ Aα

∨
α∈Γ νB2(Aα).

[Since B2 is an ordinary intuitionistic smooth base for τ2]

Since x ∈ A and A =
⋃
α∈ΓAα, there is α0 ∈ Γ such that x ∈ Aα0

. Thus∧
{Aα}α∈Γ⊂2X , A=

⋃
α∈Γ Aα

∨
α∈Γ

νB2
(Aα) ≥ νB2

(Aα0
) ≥

∧
x∈B⊂A

νB2
(B).

So νB1
(A) ≥

∧
x∈B⊂A νB2

(B).

(⇐): Suppose the necessary conditions hold. Then, by Theorem 4.8 in [27], µτ1 ≤ µτ2 . Let

A ∈ 2X . Then

ντ1(A) =
∨
x∈A

∧
x∈B⊂A νB1

(B) [By Lemma 4.2]

≥
∨
x∈A

∧
x∈B⊂A

∧
x∈C⊂B νB2

(C) [By the hypothesis]
17
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=
∧
x∈C⊂A

∨
x∈A νB2

(C)

=
∧
{Cx}x∈A⊂2X , A=

⋃
x∈A Cx

∨
x∈A νB2(Cx)

= ντ2(A).

Thus ντ1 ≥ ντ12
. So τ1 is finer than τ2. This completes the proof. �

The following is the immediate result of Definition 5.6 and Theorem 5.7.

Corollary 5.8. Let B1 and B1 be ordinary intuitionistic smooth bases for two ordinary intu-

itionistic smooth topologies on a set X, respectively. Then

B1 and B1 are equivalent if and only if

(1) for each B1 ∈ 2X and each x ∈ B1, µB1
(B1) ≤

∨
x∈B2⊂B1

µB2
(B2) and νB1

(B1) ≥∧
x∈B2⊂B1

νB2(B2),

(2) for each B2 ∈ 2X and each x ∈ B2, µB2(B2) ≤
∨
x∈B1⊂B2

µB1(B1) and νB2(B2) ≥∧
x∈B1⊂B2

νB1
(B1).

It is obvious that every ordinary intuitionistic smooth topology itself forms an ordinary

intuitionistic smooth base. Then the following provides a sufficient condition for one to see if a

mapping B : 2X → I ⊕ I such that µB ≤ µτ and νB ≥ ντ is an ordinary intuitionistic smooth

base for τ , where τ ∈ OIST (X).

Proposition 5.9. Let (X, τ) be an oists, let B : 2X → I ⊕ I be a mapping such that µB ≤ µτ

and νB ≥ ντ and for each x ∈ X and each A ∈ 2X such that x ∈ A, let µτ ≤
∨
x∈B⊂A µB(B)

and ντ ≥
∧
x∈B⊂A νB(B). Then B is an ordinary intuitionistic smooth base for τ .

Proof. From the proof of Proposition 4.10 in [27], it is clear that the first part of the condition

(1) of Theorem 5.4 holds, i.e.,
∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ µB(Bα) = 1.

On the other hand,∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ νB(Bα)

≥
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ ντ (Bα) [Since νB ≥ ντ ]

≥
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

ντ (
⋃
α∈ΓBα) [By the axiom (OIST3)]

= ντ (X)

=
∨
x∈X

∧
x∈B⊂X ντ (B) [By Lemma 4.2]

≥
∨
x∈X

∧
x∈B⊂X

∧
x∈C⊂B νB(C) [By the hypothesis]

=
∧
x∈C⊂X

∨
x∈X νB(C)

=
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ νB(Bα).

Since τ ∈ OIST (X), ντ (X) = 0. Thus
∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ νB(Bα) = 0. So the

condition (1) of Theorem 5.4 holds.

Now let A1, A2 ∈ 2X and let x ∈ A1 ∩A2. Then, by the proof of Proposition 4.10 in [27], it

is obvious that µB(A1) ∧ µB(A2) ≤
∨
x∈A⊂A1∩A2

µB(A). On the other hand,

νB(A1) ∨ νB(A2) ≥ ντ (A1) ∨ ντ (A2) [Since νB ≥ ντ ]

≥ ντ (A1 ∩A2) [By the axiom (OIST2)]

≥
∧
x∈A⊂A1∩A2

νB(A). [By the hypothesis]

Thus the condition (2) of Theorem 5.4 holds. So, by Theorem 5.4, B is an ordinary intuitionistic

smooth base for τ . This completes the proof. �

Definition 5.10. Let (X, τ) be an oists and let ϕ : 2X → I⊕I be a mapping. Then ϕ is called

an ordinary intuitionistic smooth subbase for τ , if ϕu is an ordinary intuitionistic smooth base
18
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for τ , where ϕu : 2X → I ⊕ I is the mapping defined as follows: for each A ∈ 2X ,

ϕu(A) = (
∨

{Bα}<2X , A=
⋂
α∈Γ Bα

∧
α∈Γ

µϕ(Bα),
∧

{Bα}<2X , A=
⋂
α∈Γ Bα

∨
α∈Γ

νϕ(Bα)),

where < stands for “a finite subset of”.

Example 5.11. Let (r, s) ∈ I1⊕ I0 be fixed. We define the mapping ϕ : 2R → I ⊕ I as follows:

for each A ∈ 2R,

µϕ(A) =

{
1 if A = (a,∞) or (−∞, b) or (a, b)

r otherwise

and

νϕ(A) =

{
0 if A = (a,∞) or (−∞, b) or (a, b)

s otherwise,

where a, , b ∈ R such that a < b. Then we can easily see that ϕ is an ordinary intuitionistic

smooth subbase for the (r, s)-ordinary intuitionistic smooth usual topology U(r,s) on R.

Theorem 5.12. Let ϕ : 2X → I ⊕ I be a mapping. Then ϕ is an ordinary intuitionistic

smooth subbase for some oist if and only if
∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ µϕ(Bα) = 1 and∧

{Bα}α∈Γ⊂2X , X=
⋃
α∈Γ Bα

∨
α∈Γ νϕ(Bα) = 0.

Proof. (⇒): Suppose ϕ is an ordinary intuitionistic smooth subbase for some oist. Then, by

Definition 5.10, it is clear that the necessary condition holds.

(⇐): Suppose the necessary condition holds. We only show that ϕu satisfies the condition

(2) in Theorem 5.4. Let A, B ∈ 2X and x ∈ A ∩ B, for each x ∈ X. Then, by the proof of

Theorem 4.3 in [43], it is obvious that µϕu(A) ∧ µϕu(B) ≤
∨
x∈C⊂A∩B µϕu(C).

On the other hand,

νϕu(A) ∨ νϕu(B)

= (
∧⋂

α1∈Γ1
Bα1

=A

∨
α1∈Γ1

νϕ(Bα1
)) ∨ (

∧⋂
α2∈Γ2

Bα2
=B

∨
α2∈Γ2

νϕ(Bα2
))

=
∧⋂

α1∈Γ1
Bα1

=A

∧⋂
α2∈Γ2

Bα2
=B(

∨
α1∈Γ1

νϕ(Bα1
) ∨

∨
α2∈Γ2

νϕ(Bα2
))

≥
∧⋂

α∈Γ Bα=A∩B
∨
α∈Γ νϕ(Bα)

= νϕu(A ∩B).

Since x ∈ A ∩ B, νϕu(A) ∨ νϕu(B) ≥ νϕu(A ∩ B) ≥
∧
x∈C⊂A∩B νϕu(C). Thus ϕu satisfies the

condition (2) in Theorem 5.4. This completes the proof. �

Example 5.13. Let X = {a, b, c, d, e} and let (r, s) ∈ I1 ⊕ I0 be fixed. We define the mapping

ϕ : 2X → I ⊕ I as follows: for each A ∈ 2X ,

µϕ(A) =

{
1 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
r otherwise

and

νϕ(A) =

{
0 if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}}
s otherwise,

Then X = {a} ∪ {b, c, d} ∪ {c, e}, µϕu({a}) = µϕu({b, c, d}) = µϕu({c, e}) = 1 and νϕu({a}) =

νϕu({b, c, d}) = νϕu({c, e}) = 0. Thus∨
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∧
α∈Γ

µϕ(Bα) = 1
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and ∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

νϕ(Bα) = 0.

So, by Theorem 5.12, ϕ is an ordinary intuitionistic smooth subbase for some oist.

The following is the immediate result of Corollary 5.8 and Theorem 5.12.

Proposition 5.14. ϕ1, ϕ2 : 2X → I ⊕ I be two mappings such that

(
∨

{Bα}α∈Γ⊂2X , X=
⋃
α∈Γ Bα

∧
α∈Γ

µϕ1
(Bα),

∧
{Bα}α∈Γ⊂2X , X=

⋃
α∈Γ Bα

∨
α∈Γ

νϕ1
(Bα)) = (1, 0)

and

(
∨

{Bα}α∈Γ⊂2X , X=
⋃
α∈Γ Bα

∧
α∈Γ

µϕ2(Bα),
∧

{Bα}α∈Γ⊂2X , X=
⋃
α∈Γ Bα

∨
α∈Γ

νϕ2(Bα)) = (1, 0).

Suppose the two conditions hold:

(1) for each S1 ∈ 2X and each x ∈ S1, µϕ1(S1) ≤
∨
x∈S2⊂S1

µϕ2(S2) and νϕ1(S1) ≥∧
x∈S2⊂S1

νϕ2
(S2),

(1) for each S2 ∈ 2X and each x ∈ S2, µϕ2
(S2) ≤

∨
x∈S1⊂S2

µϕ1
(S1) and νϕ2

(S2) ≥∧
x∈S1⊂S2

νϕ1
(S1).

Then ϕ1 and ϕ2 are ordinary intuitionistic smooth subbases for the same ordinary intuitionistic

smooth topology on X.

6. Conclusions

We defined an ordinary intuitionistic smooth topology and level set of an oist, and obtain

some their basic properties and gave some examples. Also we defined an ordinary intuitionistic

smooth subspace. Next, we introduced the concept of an ordinary intuitionistic smooth neigh-

borhood system and and we proved that an ordinary intuitionistic smooth neighborhood system

has the same properties in a classical neighborhood system (See Theorem 4.5). Finally, we de-

fined an ordinary intuitionistic smooth base and an ordinary intuitionistic smooth subbase, and

obtain two characterization of an ordinary intuitionistic smooth base (See Theorems 5.3 and

5.4) and one characterization of an ordinary intuitionistic smooth subbase (See Theorem 5.12),

and gave some their examples.
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