Ordinary intuitionistic smooth topological spaces

J. H. Kim, J. G. LEg, P. K. Lim, K. HUR

Received 15 April 2018; Accepted 31 May 2018

ABSTRACT. We define the ordinary intuitionistic smooth topology and
obtain some its basic properties. Next, we define the ordinary intuitionistic
smooth neighborhood system and we show that an ordinary intuitionistic
smooth neighborhood system has the same properties in a classical neigh-
borhood system (See Theorem 4.5). Finally, we introduce the concepts
of an ordinary intuitionistic smooth base and an ordinary intuitionistic
smooth subbase, and obtain two characterization of an ordinary intuition-
istic smooth base (See Theorems 5.3 and 5.4) and one characterization of

an ordinary intuitionistic smooth subbase (See Theorem 5.12).
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1. INTRODUCTION

I 1975, Zadeh [15] introduced the idea of interval-valued fuzzy sets. In 1986, Atanassov [1]
defined an intuitionistic fuzzy set as the generalization of a fuzzy set introduced by Zadeh [44]
in 1965. After then, many researchers [1, 2, 3, 4, 6, 7] have worked mainly on operators and
relations on intuitionistic fuzzy sets and iterval-valued intuitionistic fuzzy sets. In particular,
In 2010, Cheong and Hur [12] introduced the concept of an intuitionistic interval-valued fuzzy
set and studied it’s basic properties.

In 1986, Chang [3] was the first to introduce the notion of a fuzzy topology by using fuzzy
sets. After that, many researchers [16, 17, 20, 21, 22, 29, 30, 31, 34, 35, 42] have investigated
several properties in fuzzy topological spaces. In 1997, Coker [13] introduced the idea of the
topology of intuitionistic fuzzy sets. Moreover, Samanta and Mondal [38, 39] introduced the
definitions of the topology of interval-valued fuzzy sets and the topology of interval-valued
intuitionistic fuzzy sets, respectively. In 2012, Bayramov and Gunduz [5] studied intuitionistic
fuzzy topology on function spaces.

However, in their definition of fuzzy topology, fuzziness in the notion of openness of a fuzzy
set was absent. In 1992, Samanta et al. [10, 18] introduced the concept of gradation of open-
ness(closecness) of fuzzy sets in X in two different ways, and gave definitions of a fuzzy topology
on X. After that, some works have been done by Ramadan [36], Demirci [15], Chattopadhyay
and Samanta [9] and Peters [32, 33]. In particular, Ying [43] introduced the concept of the topol-
ogy (called a fuzzifying topology) considering the degree of openness of an ordinary subset of a
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set. In 2012, Hur et al. [27] studied general properties in ordinary smooth topological spaces.
Also they [24, 25, 20] investigated closures interiors and compactness in ordinary smooth topo-
logical spaces. Moreover, Coker and Demirci [14], and Samanta and Mondal [37, 40] defined
intuitionistic gradation of openness (in short IGO) of fuzzy sets in Sostak’s sense [11] thereby
gave the definition of an intuitionsitic fuzzy topology (in short, IFT). Also Hur et al. [l1]
studied an interval-valued smooth topology. They mainly dealt with intuitionistic gradation
of openness of fuzzy sets in the sense of Chang. But in 2010, Lim et al. [28] investigated
intuitionistic smooth topological spaces in Lowen’s sense. Recently, Kim et al. [23] studied
continuities and neighborhood systems in intuitionistic smooth topological spaces.

In this paper, we define the ordinary intuitionistic smooth topology and obtain some its
basic properties. Next, we define the ordinary intuitionistic smooth neighborhood system and
we show that an ordinary intuitionistic smooth neighborhood system has the same properties
in a classical neighborhood system (See Theorem 4.5). Finally, we introduce the concepts of an
ordinary intuitionistic smooth base and an ordinary intuitionistic smooth subbase, and obtain
two characterization of an ordinary intuitionistic smooth base (See Theorems 5.3 and 5.4) and

one characterization of an ordinary intuitionistic smooth subbase (See Theorem 5.12).

2. PRELIMINARIES

In this chapter, we list some concepts and results which are needed in later chapters.
Throughout this paper, X,Y, Z, etc. always denote nonempty (ordinary) sets. We will write
I=10,1],Io = (0,1] and I, = [0, 1).

Definition 2.1 ([44]). A mapping A : X — I is called a fuzzy set in X. 0 and 1 are called
the empty fuzzy set and the whole fuzzy set in X defined by 0(z) = 0 and 1(z) = 1 for each
x € X, respectively. The set {x € X : A(z) > 0} is called a support of A and is denoted by
S(A) or Ap.

We will denote the set of all fuzzy sets as IX.

From [3], we can see that (IX,U,N,0,1) is a complete distributive lattice satisfying the
DeMorgan’s Laws with the least element O and the greatest element 1.

Let I&T ={(a,b) €I xI:a+b< 1}, let (a,b),(c,d) € I and let {(an,ba)}acr CTDI.
We define the following(See [12]) :
i) (a,b) < (¢,d) iff a < cand b >d,
ii) (a,b) = (¢,d) iff (a,b) < (¢,d) and (¢, d) < (a,b),
iii) (a,b)¢ = (b,a), where (a,b)¢ denotes the complement of (a,b),

(
(
(
(iv) \/ (@a,ba) = (\/ Ao, /\ ba),

acl ael acll
(V) /\ (aavba) = (/\ QA \/ boc)-
acl acll acl

Each member (a,b) of I @ I will be called an intuitionistic point. When the elements of
I®1 are denoted be capital letters M, N, --- , we will write M = (uar,var), N = (un,vn), -,
where ppr and vy are the membership and the nonmembership points, respectively. Moreover,
from Theorem 2.1 in [12], we can see that (I & I, <) is a complete distributive lattice with the

greatest element (1,0) and the least element (0, 1) satisfying DeMorgan’s laws.
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The following is the modification of the concept of the concept of intuitionistic fuzzy sets

introduced by Atanassov (See [1]).

Definition 2.2 ([12]). A mapping A : X — I &1 is called an intuitionistic fuzzy set in X and

we write A(z) = (ua(z),va(x)) for each z € X. 0 and 1 are the empty intuitionistic fuzzy set

and the whole intuitionistic fuzzy set in X given by 0(z) = (0,1) and 1(x) = (1,0), respectively.
We will denote the set of all intuitionistic fuzzy sets in X as (I & I)X.

Definition 2.3 ([1]). Let A, B € (I® 1) and let {Ay}aer C (I®I)*. Then the union U Aa,
acTl
the intersection ﬂ A, the complement A€ of A and the inclusion A C B are defined as follows:

aecl
for each x € X,

@) (J A)@) = (V man (@), A va. (@),

ael ael ael
(i) ([ Aa)(@) = (N na.(@), \/ va. (@),
ael ael ael

(iii) A%(z) = (va(z), pa(z)),
(iv) AC Biff pa(z) < pp(zr) and va(x) > vp(z).

We can easily see that ((I©1)%,U,N) is a complete distributive lattice with the least element

0 and the greatest element 1 satisfying DeMorgan’s laws.

Definition 2.4 ([19]). Let 6 and 0" be two Chang’s fuzzy topologies on a nonempty set X.
Then the triple (X, d,0") is called a fuzzy bitopological space.

If 7, 7" € ST(X), then we will called the triple (X, 7,7") as a smooth bitopological sapce (of
fuzzy sets) and the ordered pair (7,7) will be called a smooth bitopology (of fuzzy sets) (in
short, SBTF'S) on X in Chang's sense (See [10], p.324).

Definition 2.5 ([40]). Let (X, (7,7)) be a smooth bitopological space in Chang’s sense. Then

(X, (r,7")) is said to be inclusive, if T C 7'.
3. ORDINARY INTUITIONISTIC SMOOTH TOPOLOGICAL SPACES

In this section, we define an ordinary intuitionistic smooth topological space and obtain some
its properties. Throughout this paper, we denote the set of all subsets [resp. fuzzy subsets] of
aset X as 2% [resp. IX].

Definition 3.1. Let X be a nonempty set. Then a mapping 7 = (y,,v,) : 2% — I &1 is called
an ordinary intuitionistic smooth topology (in short, oist) on X, if it satisfies the following
axioms: for any A, B € 2% and each {4, }aer C 2.

(OIST1) 7(6) = 7(X) = (1,0),

(OIST2) iz (AN B) > pr(A) A e (B) and v, (AN B) < v, (A) V v,(B),

(OIST3) pr(Uner Aa) 2 Aper #r(Aa) and v (Uyer Aa) < Vaer vr(4a)-
The pair (X, 7) is called an ordinary intuitionistic smooth topological space (in short, oists).

We will denote the set of all ordinary intuitionistic smooth topologies on X as OIST(X).

Let 2 = {0,1} and let 7 : 2% — 2 @ 2 satisfy the axioms in Definition 3.1. Since we can
consider as (1,0) = 1 and (0,1) = 0, 7 € T(X), where T(X) denotes the set of all classical

topologies on X. Moreover, 2% C IX. Then we can see that T(X) C OIST(X) C IST(X).
3
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Remark 3.2. Let (X, 7) be an oists. Then (X, p,) and (X, v¢) are ordinary smooth topological

spaces. Moreover, (X, ., v¢) is an inclusive smooth bitopological space, where v =1 — v,.

Example 3.3. (1) Let X = {a,b,c}. Then 2% = {6, X, {a}, {b},{c}, {a, b}, {a,c},{b,c}}. We
define the mapping 7 : 2X — I @ I as follows:
() = 7(X) = (1,0),
7({a}) = (0.7,0.2), 7({b}) = (0.4,0.5), 7({c}) = (0.6,0.3),
7({a,b}) = (0.6,0.3), 7({b, c}) = (0.8,0.1),7({a, c}) = (0.3,0.7).
Then we can easily see that 7 € OIST(X).
(2) Let X be a nonempty set. We define he mapping 74 : 2X — I @ I as follows: for each
A€ 2X,

(4) (1,0) if either A=¢ or A =X,
T, =
¢ (0,1) otherwise.

Then clearly, 7, € OIST(X).

In this case, 74 [resp. (X,7,)] will be called the ordinary intuitionistic smooth indiscrete
topology on X [resp. the ordinary intuitionistic smooth indiscrete space].

(3) Let X be a nonempty set. We define he mapping 7x : 2X — I @ I as follows: for each
A€ 2X,

7x(A4) = (1,0).

Then clearly, 7x € OIST(X).

In this case, 7x [resp. (X,7x)] will be called the ordinary intuitionistic smooth discrete
topology on X [resp. the ordinary intuitionistic smooth discrete space].

(4) Let X be a set and let (r,s) € I @ Iy be fixed. We define he mapping 7: 2% — I & I as
follows: for each A € 2%,

(A) = { (1,0) if either A = ¢ or A€ is finie,

(r,s) otherwise.

Then we can easily see that 7 € OIST(X).

In this case, 7 will be called the (r, s)-ordinary intuitionistic smooth finite complement topol-
ogy on X and will be denoted by TOSCof(X). IOSCof(X) is of interest only when X is an
infinite set, because if X is finite, then JOSCof(X) = 7.

(5) Let X be an infinite set and let (r,s) € I; @ Iy be fixed. We define he mapping 7 : 2% —
I @I as follows: for each A € 2%,

7(A) = { (1,0) if either A = ¢ or A° is countable,

(r,s) otherwise.

Then clearly, 7 € OIST(X).

In this case, 7 will be called the (r, s)-ordinary intuitionistic smooth countable complement
topology on X and will be denoted by TOSCoc(X).

(6) Let T be the topology generated by S = {(a,b] : a,b € R,a < b} as a subbase, and let

Ty be the family of all open sets of R w.r.t. the usual topology of R. We define the mapping
4
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7:28 5 T @ T as follows: for each A € I¥,

(1, 0) if A €Ty,
T(A) =14 (0.6,0.3) if Ae T\ Ty,
(0,1) otherwise.

Then we can easily see that 7 € OIST(X).
(7) Let T € T(X). We define the mapping 77 : 2% — I @ I as follows : for each A € 2%,

(@0 itder,
- 00

,1)  otherwise.

Then it is easily seen that 70 € OIST(X). Moreover, we can see that if T is the classical
indiscrete topology, then 7 = 74 and if T is the classical discrete topology, then 7 = 7x.

Definition 3.4. Let X be a nonempty set. Then a mapping C = (uc,vc) : 2% = I @ I is
called an ordinary intuitionistic smooth cotopology (in short, oisct) on X if it is satisfies the
following conditions: for any A, B € 2% and each {4, }aer C 2.

(OISCT1) C(¢) = C(X) = (1,0),

(OISCT2) pc(AU B) = pe(A) A pe(B) and ve(AU B) < ve(A) V ve(B),

(OISCT3) pe(() Aa) = N ne(Ao) and ve(() 4a) < \/ ve(Aq).

acl ael ael acl
The pair (X, C) is called an ordinary intuitionistic smooth cotopological space (in short, oiscts).

Remark 3.5. If I = 2, then we can think that Definition 3.1 also coincides with the known

definition of classical topology.

Just as with ordinary topological spaces, the connection between intuitionistic smooth topolo-
gies and intuitionistic smooth cotopologies is a bijective one, and is given by means of comple-
mentation. Then we have the following result and its proof follows from Definitions 3.1 and
3.4.

Proposition 3.6. We define two mappings f : OIST(X) — OISCT(X) and g : OISCT(X) —
OIST(X) as follows, respectively:
[f(D](A) =7(A°), Y7 €OIST(X), ¥V Aec2X
and
[g(C)](A) =C(A°), ¥V C € OISCT(X), V Ac2X.
Then f and g are well-defined. Moreover, go f = lorsr(x) and f o g = lorscr(x)-

Remark 3.7. For each 7 € OIST(X) and each C € OISCT(X), let f(7) =C, and ¢g(C) = 7¢.

Then, from Proposition 3.6, we can see that 7¢, = 7 and C,, =C.

Definition 3.8. Let 7,,7, € OIST(X) and let C;,Cs € OISCT(X).

(i) We say that 7, is finer than 7, or 7, is coarser than 7,, denoted by 7, < 7,,if 7,(A) < 7, (4),
ie., pir,(A) < pr (A) and v, (A) > vy (A), for each A € 2X.

(ii) We say that C; is finer than Cs or Cs is coarser than C;, denoted by Co < Cq, if C2(A) <
C1(A), i.e., ke, (4) < ke, (A) and ve, (4) > ve, (A), for each A € 2X.

We can easily see that 7, is finer than 7, if and only if C; is finer than C;_, and (OIST(X), <)

and (OISCT(X), =) are posets, respectively.
5
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From Example 3.3 (2) and (3), it is obvious that 7, is the coarest ordinary intuitionistic

smooth topology on X and 7x is the finest ordinary intuitionistic smooth topology on X.

Proposition 3.9. If {7, }aer C OIST(X), then (\,cp 7, € OIST(X),
where [ﬂaer Ta](A) = (/\aEF 2z (A)? \/aEF Vr, (A))7 VAe 2%,

Proof. Let 7 =(,er 7. and let A € 2% Since 7, € IST(X), for ecach a € T', pi,_ (A)+v-_ (A) <
1. Then p, (A) < 1 —v, (A). Thus /\ pr, (A) < /\ 1—-v (A) =1~ \/ v, (A4). So

ael ael’ acl
Aaer tr, (A) + Voer vr, (A) < 1. Hence pr(A) + v7(A) < 1and thus 7 :2¥ - I @1 isa

mapping. Therefore the condition (OIST1) holds.
Let A, B € 2X. Then
pr (AN B) = A\ cr vr, (AN B) [By the definition of 7]
> Naer(vr, (A) Avr (B)) [Since 7 € OIST(X)]
= Naer 720 (A) A (Ao 2. (B))
=v,(A) A v, (B) [By the definition of 7]
and
v-(ANB) =\ crVr, (AN B)
< Vaer(vr, (4) Ve (B))
= Vaer vra (A) V (Vaer vr. (B))
— v (A)V s (B),
So the condition (OIST2) holds.
Now let {A;}jcs C 2. Then
pr(Ujes 45) = Naer #r, (Uje s 45) [By the definition of 7]
2 /\aeF(/\jeJ pir, (4;)) [Since 7, € OIST(X)]

= /\jeJ(/\aeI‘ Hr, (Aj))
= Njes[Naer #r,](A4;) [By the definition of 7]
= VjeJ MT(Aj)

and

vr(Ujes Aj) = Vaer vr, (Ujes 4;) [By the definition of 7]

< VaEF(VjEJ vr (Aj)) [Since 7, € OIST(X)]
= VjeJ(\/aeI‘ vr, (4;))
=V,eslUner v, 1(4;) [By the definition of 7]
= \/jeJ vr(4;).

Thus the condition (OIST3) holds. This completes the proof. O

From Definition 3.8 and Proposition 3.9, we have the following.

Proposition 3.10. (OIST(X), =) is a meet complete lattice with the least element T, and the

greatest element Tx .

Definition 3.11. Let (X, 7) be an oists and let (\,u) € I © I. We define [7](, ,,) and [7]
as follows, respectively:

() o = 14 € 2% ir(4) > A, wa(4) < i,

(i) [7]{n ) = {4 € 2% (A) > A, v (A) < p}

z/\,u)

6
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[T](ap) [resp. [T]y )] is called the (A, p)-level [resp. strong (A, u)-level] of 7. If (A, 1) = (0,1),
then [7](0,1) = 2%, i.e., [T](0,1) is the classical discrete topology on X and if (A, ) = (1,0), then
[7]{1,0) = @- Moreover, we can easily see that for any (A, u) € I &1, [7]f} ) C T(ap)-

Lemma 3.12. Let 7 € OIST(X).
(1) For each (A, pu) € I ® I, [T](x ) € T(X).
(2) If (A, 1) < (A2yp,) in TSI, then [T]x,,0,) C [Tl )
(3) For each (A, pu) € Io ® In, [T](a) = ﬂ [T] vy -
) Asu)<(Ap)
(1) For each (A,p) € Iy & I, [7]7y ) € T(X).
()" If Aiypy) < Qo) in TS L, (77, 0y C 710 -
(3)" For each (\,p) € I & I, [Tl = U [T1en -
Aou)>(p)
Proof. The proofs of (1), (1), (2) and (2)" are obvious from Definitions 3.1 and 3.10.
(3) From (2), {[7](x,u)} (ru)etoer, is a descending family of classical topologies on X. Then
clearly, [T]oxm C N uy< ol Tlovwns for each (A p) € Io @ 1.
Suppose A ¢ [7](x,.). Then p-(A) < X or v-(A) > p. Thus
3 s € Iy such that p(A4) <s <A
or
3¢ € I such that v (A) >t > p.
So A ¢ [7](s), for some (s,t) < (A, p), e, A¢ () [Flov-

(Nu") <(Asm)
Therefore ﬂ Tv ) C Ty Hence [T]y ) = ﬂ [T v
V1)< (X, p) (N1 < (X, p)
The proof of (3) is similar to (3). O

Remark 3.13. From (1) and (2) in Lemma 3.12, we can see that for each 7 € OIST(X),
{ITlouw Youwerer is a family of descending classical topologies called the (A, ut)-level classical

topologies on X w.r.t. 7.
The following is the immediate result of Lemma 3.12.
Corollary 3.14. Let (X, 1) be an oists. Then
[TIoni—n) = ﬂ [TIov=a, VA€ o,
A<
Lemma 3.15. (1) Let {T(x )} perer be a descending family of classical topologies on X

such that Ti 1y is the classical discrete topology on X. We define the mapping 7 : 2X 5 Il
as follows: for each A € 2%,

W=V AN A w
AE€Tx,y  AETH
Then T € OIST(X).
(2) If Tonwy = N ury< o) 0wy for each (A, ) € Io @ I, then [T]x 1) = Tix,p)-
(3) If Tia ) = U(A/#,»(AM Ty, for each (N, p) € It @ Iy, then [T]Z‘AM =T u)-

Proof. The proof is similar to Lemma 3.9 in [28]. O
7
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The following is the immediate result of Lemma 3.15.

Corollary 3.16. Let {T(x1-x) }xe1, be a descending family of classical topologies on X such
that T(o,1) is the classical discrete topology on X. We define the mapping T : 2X 5 I 1 as

follows: for each A € 2%,
A=V A A
AET(n1-n) AET(u -
Then
(1) 7 € OIST(X),
(1) [T](A,l—)\) = ﬂx<>\ Tovai-xy =T, vV A€ .

From Lemmas 3.12 and 3.15, we have the following result.

Corollary 3.17. Let 7 € OIST(X) and let [T](x ) be the (A, u)-level classical topology on X
w.r.t. 7. We define the mapping n: 25 — I & I as follows: for each A € 2%,

A=V x A w.

A€l A€l

Then n =rT.

The fact that an ordinary intuitionistic smooth topological space fully determined by it’s

decomposition in classical topologies is restated in the following Corollary.

Corollary 3.18. Let 1,7, € IST(X). Then 1, = 7, if and only if [T,](x.u) = [Tal(r,p), for each
(M) € I@1, or, alternatively, if and only if [TJE‘MO = [TQ]?A ) for each (A, u) € I 1.

Remark 3.19. In a similar way, we can construct an ordinary intuitionistic smooth cotopology
C on a set X, by using the (A, u)-levels,

Clogy = {A € I¥ : o (A) > X and v, (4) < i}

and
(Clingy = (A€ T 2 1 (4) > X and v, (4) < ),
for each (\,u) €e I @ 1.

Definition 3.20. Let T' € T(X) and let 7 € OIST(X). Then 7 is said to the compatible with
T,if T = S(7), where S(7) = {A € 2% : i, (A) > 0 and v, (4) < 1}.

Example 3.21. (1) Let 74 be the ordinary intuitionistic smooth indiscrete topology on a

nonempty set X and let Ty be the classical indiscrete topology on X. Then clearly,
S(1y) ={A€ 2% : i, (A) >0and v, (A) < 1} = {6, X} = Tp.

Thus 74 is compatible with Tp.
(2) Let 7x be the ordinary intuitionistic smooth discrete topology on a nonempty set X and

let T be the classical discrete topology on X. Then clearly,
S(rx) ={A€2¥ : (A >0and v, (A) <1} =2% =T1.

Thus 7x is compatible with T;.
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(3) Let X be a nonempty set and let (r,s) € Iy @ I; be fixed. We define he mapping
7:2% 5 T @I as follows: for each A € 2%,

7(A) = (1,0) 1fe1the'rA:¢orA:X,
(r,s) otherwise.

Then clearly, 7, € OIST(X) and 7 is compatible with 7.

Furthermore, every classical topology can be considered as an ordinary intuitionistic smooth

topology in the sense of the following result.

Proposition 3.22. Let (X,T) be a classical topological space and and let (A, p) € Io ® I be
fized. Then there exists T € OIST(X) such that T is compatible with T. Moreover,
[T(A’“)](/\,u) =T.

In this case, T#) is called (X, p)-th ordinary intuitionistic smooth topology on X and
(X, T is called a (\, p)-th ordinary intuitionistic smooth topological space.

Proof. Let (\, ) € Iy @ I; be fixed. and we the mapping T3#) : 2X — T @ I as follows: for
each A € 2%,
(1,0) if either A=¢ or A=X,
TOW(A) = (\u) ifAeT\{¢ X},
(0,1)  otherwise.
Then we can easily see that T € OIST(X) and [T™)]( ) = T. Moreover, by the
definition of TM:#)

ST = {A € 2% : ppow(A) > 0 and vy (A) <1} =T.
Thus TWM#) is compatible with 7. O

Proposition 3.23. Let (X,T) be a classical topological space and let C(T) be the set of all
oists on X compatible with T. Then there is a one-to-one correspondence between C(T') and
the set (I ® 1)T, where T =T\ {¢, X}.

Proof. We define the mapping F : (Ip @ Il)f — C(T) as follows: for each f € (Ip @ Il)f7
F(f) =y,
where 7, : 2% — I & I is the mapping defined by: for each A € 2%,

(1,0) if either A=¢ or A =X,
(A=< f(A) fAeT,
(0,1)  otherwise.
Then we easily see that 7, € C(T).
Now we define the mapping G : C(T) — (Io @ I)T as follows: for each 7 € C(T),

G(T) = f‘l'7
where f, : T — Iy @ I is the mapping defined by: for each A € T,
f(A) = 7(4)

Then clearly, f. € (Ip @ Il)f.



J. H. Kim et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx—xx

Furthermore, we can see that F'oG = id¢(ry and GoF' = id(Io@h)f. Thus C(T) is equipotent
to (Io @ Il)f This completes the proof. O

Proposition 3.24. Let (X,7) be an oists and let A C X. We define the mapping T4 : 24 —
I® I as follows: for each B € 24,
TA(B) = (/"LTA(B)7VTA(B)) = ( \/ /LT(C), /\ VT(C))
Ce2X, B=CnA Ce2X, B=CnA
Then 74 € OIST(A), and p,,(B) > p.(B) and v, (B) < v, (B), for each B € 24.
In this case, (A, 74) is called an ordinary intuitionistic smooth subspace of (X, 7) and 74 is

called the induced ordinary intuitionistic smooth topology on A by 7.

Proof. For each B € 24, 1let B=ANC and C € 2X. Since 7 € OIST(X), p-(C) <1 —v,(C).
Thus
V w@< /) -w@)=1- A ().
Ce2X, B=AnC Ce2X, B=AnC Ce2X, B=ANC
So jir,(B) <1 —v,,(B). Hence 74 : 24 — I @ I is a mapping.
It is obvious that the condition (OIST1) holds, i.e., Ta(¢) = Ta(A) = (1,0).
Let By, By € 24. Then, by proof of Proposition 5.1 in [27], jtr, (B1NBa) > fir, (B1)Apir, (Ba).
Let us show that v, (By N B2) < vy, (B1) V vy, (Bz). Then
Vra(B1) Vvry(B2) = (Ac,eax, Bi—anc, ¥ (C1)) V (Acyeax, By—anc, ¥-(C2))
= Acy, ciea*, BinBa=an(cines) Vra(C1) V vz, (C2)]
> Acy, cre2*, BinBa=an(cines) Vra(C1 N Ca)
=v,, (B N By).
Thus the condition (OIST2) holds.
Now let { Bq }aer C 24. Then, by proof of Proposition 5.1 in [27], fir, (Uper Ba) = Awer Hra (Ba)-
On the other hand,

Vra (UaGF Ba) = /\C(,GQX, (Uaer Ca)NA=U, cp Ba VT(Uaer Ca)

S Neae2X, (U, op Ca)nA=U,.p Ba Nacr V7 (Ca)]

ael’
= NaerlAc,eax, (U, o Ca)na=u, . B Vr(Cal

= Aacr Hra(Ba).
Thus the condition (OIST3) holds. So 74 € OIST(A).

Furthermore, we can easily see that ji,, (B) > u,(B) and v,,(B) < v,(B), for each B € 2.
This completes the proof. O

The following is the immediate result of Proposition 3.24.
Corollary 3.25. Let (A,74) be an ordinary intuitionistic smooth subspace of (X,T) and let
Be 24
(1) Ca(B) = (Veeax p=pna #c(C), Aceax p=pnave(C)), where Ca(B) = 1a(B°).
2 IfZCcY CX, thent, =(1,),.
4. ORDINARY INTUITIONISTIC SMOOTH NEIGHBORHOOD STRUCTURES OF A POINT

Definition 4.1. Let (X,7) be an oists and let 2 € X. Then a mapping N, : 2% — I § I is
called the ordinary intuitionistic smooth neighborhood system of x, if for each A € 2%,

AeN,:=3B(BeT)A(zx € BcCA),
10
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ie.,

[A S Nz] :Nz(A) = (MNI(A)vny(A)) = ( \/ /’I’T(B)7 /\ VT(B)>

rEBCA reBCA

Lemma 4.2. Let (X,7) be an oists and let A € 2X. Then

/\ \/ MT(B) :MT(A)

r€AzEBCA

VoA (B = wi(A).

r€AxeEBCA

and

Proof. By Lemma 3.1 in [43], it is obvious that A c 4 V,cpca tir(B) = pr(4).
On the other hand, it is clear that \/ o4 A,cpcavr(B) > vr(A). Now let B, = {B € 2% :
r € B C A} and let f € ll;eaB,. Then clearly, |J,c 4 f(z) = A. Thus

V vr(f@) < ve(|J f(2) = ve(A).

T€A r€A
So
VA v=B= A V(@) <v(A).
z€AzeBCA fEMuca zEA
Hence \/, 4 Ayepcavr(B) =vr(A). O

Theorem 4.3. Let (X,7) be an oists, let A € 2% and let z € X. Then
F(Aer) < V(e A—3IB(BeN,) A (BCA)),
i.e.,
[Aer]=N(xeA—3IBBeN,)A(BCA),

i.e.,

[A € T] = (:LLT(A)7VT(A)) = ( /\ \/ I’LN_z(B)7 \/ /\ VN_[(B)>'

z€A BCA z€ABCA
Proof. From Theorem 3.1 in [13], it is clear that . (A) = A ca Viaea v, (B).
On the other hand,
vr(A) = Vaea Nacocav-(C) [By Lemma 4.2]

= va;eA /\BcA /\ggeCCB VT(C)
= Vsea Acavn, (B). [By Definition 4.1]
This completes the proof. ([l

Definition 4.4. A € (I ® I)¥ is said to be normal, if there is € X such that A(z) = (1,0).
We will denote the set of all normal intuitionistc fuzzy subsets of 2% as (I & I )?VX

From the following result, we can see that an ordinary intuitionistic smooth neighborhood

system has the same properties in a classical neighborhood system.

Theorem 4.5. Let (X, 7) be an oists and let N : X — (I & I)?VX be the mapping given by
N(z) =N, for each x € X. Then N has the following properties:

(1) foranyxz € X, Ac2X FAc N, >z €A,

(2) foranyx € X, A,B€2X E(Ae€N,)AN(BEN,) —ANBEN,,

(3)

3) foranyz € X, ABe2X, F(ACB)— (AeN, = BeN,),
11
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(4) for anyz € X, E (A e N;) = 3C(C e Ny) AN(C CA)AVy(y € C— C e Ny)).
Conversely, if a mapping N : X — (I @ I)?\;( satisfies the above properties (2) and (3), then
there is an ordinary intuitionistic smooth topology T : 2% — (I ® I) on X defined as follows:
for each A € 2%,
AerT:=Ve(z e A— AeN,),

i.e.,
[A € 7] =7(4) = (1r(A),v7(4)) = (\ pn.(4), \/ . (A)).
z€A T€A
In particular, if N satisfies the above properties (1) and (4) also, then for each x € X, Ny
is an ordinary intuitionistic smooth neighborhood system of x with respect to 7.

Proof. (1) Since A € 2%, A = (xa,xac) € (I ®I)X. Then
[v € A] = (xa(z), xa<(2)) = (1,0).

On the other hand, [A € No] = (V,ccca tir(C), Apecca v (C)). Clearly, \/ ccca - (C) >
0 and A cccavr(C) <1. Thus [A € N;] < [z € A].

(2) By the definition of N, [AN B € Nyl = (V,eccans #7(C)s Apcccanp v-(C)). From
the proof of Theorem 3.2 (2) in [13], it is obvious that par, (AN B) > par, (A) A pn, (B). Then
it is sufficient to show that var, (AN B) < var, (A) V var, (B). On the other hand,

UN,(ANB) = Nyeccanp v (C) = /\zeCch, zeCyCA v (Cr1NCy)
< /\wECch, meCZCA(VT(Ol) Vv (C2))
= Neccicavr(C1)V Npegyca vr(Co)
— . (A) Vo, (B).
Thus [ANB € N,| > [(A € N) A (B €N
(3) The proof is immediate.
(4) It is clear that
BC(C e Ny) A (C C A AVy(y € C — C € Ny))]
— (Veealins (€ A Ayee 1 (V) Acealvns (€)Y Ve v, (©)).
Then, by the proof of Theorem 3.2 (4) in [13], it is clear that

V v, (©) A N i, (O)] = v, (A).
CCA yel
From Lemma 3.1, \/, cc vn, (C) =V, cc Ayepcc Vr (D) = v7(C). Thus
Nccaltn(C)V V yeovn, (C)l = Aocalvn, (C) Vv (C)] = Acc 4 v-(C)
< Nieccavr(C) = vn, (4).
So [AC((C e Ng) A(C CA)AVy(y e C— C e Ny))| > [A e N,].
Conversely suppose N satisfies the above properties (2) and (3) and let
7(A) = (N 1. (A), \ wn (4)).
z€A T€A
Then clearly, 7(¢) = (1,0). Since N, is intuitionistic fuzzy normal, there is Ay € 2% such that
Nz(Ap) = (1,0). Thus M, (X) = (1,0). So
7(X) = (N pn. (%), V v, (X)) = (1,0).
zeX zeX

Hence 7 satisfies the axiom (OIST1).
12
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From the proof of 3.2 in [43], it is clear that p, (AN B) > u-(A) A i (B).
On the other hand,
V(AN B) =V, canp A (AN B) € Va0, (A) V iy (B))
= Vaecans "N (A)V Vcanp vn, (B)
<Vaer v (A VV,ep o, (B)
=v.(A) Vv, (B).
Then 7 satisfies the axiom (OIST2). Moreover, we can easily see that 7 satisfies the axiom
(OIST3). Thus 7 € OIST(X).
Now suppose N satisfies additionally the above properties (1) and (4). Then, from the proof
of 3.2 in [13], pun, (A) =V, epea tr(B), for cach z € X and each A € 2X.
Let z € X and let A € 2X. Then, by the property (4),

v, (A) = N [, (C) v\, (O)).

CCcA yeC
From the property (1), var,(C) =1, for any « ¢ C. Thus
v (A) 2 Aveocalvn (C)V Vo v, (O)
= Noecca \/yeC v, (€)

= Nocpcav-(B).
Now suppose © € C C A. Then clearly, \/yEC un, (C) > vp

x

N =B = N\ V uw(C)>vy,(A).

r€BCA rzeCCAyeC

(C) > vnr, (A). Thus

So vn, (A) = Ayepca V- (B). This completes the proof. O

5. ORDINARY INTUITIONISTIC SMOOTH BASES AND SUBBASES

Definition 5.1. Let (X, 7) be an oists and let B : 2X — I'© I be a mapping such that ug < i,
and vz > v,. Then B is called an ordinary intuitionistic smooth base for 7, if for each A € 2%,

e (A) = \/ N ps(Ba)

{Ba}aerC2X, A=, cp B a€T

and

vy (A) = N \/ vs(Ba).

{Ba}aerCc2X, A=U,cr Ba a€T
Example 5.2. (1) Let X be a set and let B: 2% — I @ I be the mapping defined by:
B({z}) = (1,0), Vz € X.

Then B is an ordinary intuitionistic smooth base for 7x.
(2) Let X = {a,b,c}, let (r,s) € I} @ I be fixed and let B : 2% — I @ I be the mapping as
follows: for each A € 2%,

(4) (1,0) if either A = {a,b} or {b,c} or X,
(A =
(r,s) otherwise.

Then B is not an ordinary intuitionistic smooth base for an oist on X.
13



J. H. Kim et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx—xx

Assume that B is an ordinary intuitionistic smooth base for an oist 7 on X. Then clearly,
B < 7. Moreover, 7({a,b}) = 7({b,c}) = (0,1). Thus

pr({0}) = pr({a, b} N 7({b, c}) = pr-({a, b} A p-({b,c} =1
and

v ({b}) = v-({a, b} N7 ({b, c}) < v-({a,b} Av.({b,c} = 0.
So 7({b}) = (1,0). On the other hand, by the definition of B,

1-({b}) = \/ N\ 1s(As) =7

{Aataerc2¥, {b}=U,cr Aa o€l

and
v ({b}) = A V vs(4a) = s.
{Aq}aerc2¥, {b}:UaeF Aq a€l

This is a contradiction. Hence B is not an ordinary intuitionistic smooth base for an oist on X.

Theorem 5.3. Let (X,7) be an oists and let B : 2X — I ® I be a mapping such that B < 7.

Then B is an ordinary intuitionistic smooth base for T if and only if for each x € X and each
A€2%, pun, (A) < Vyepeans(B) and vy, (A) = N\,epcavs(B).

Proof. (=): Suppose B is an ordinary intuitionistic smooth base for 7. Let € X and let
A € 2. Then, by Theorem 4.4 in [27], it is obvious that uar, (A) <V, cpca 1B(B).
On the other hand,
Un, (A) = Nyepca V- (B) [By Definition 4.1]
ver Bo Vaer v8(Ba). [By Definition 4.2]
B, then there is oy € I' such that z € B,,. Thus

= /\TL’EBCA /\{Ba}aEFCQXa B=U
IfreBCcAand B=J

acl’
\/ vs(Ba) > vs(Bay) >\ vs(B).
ael’ rEBCA

So vn, (A) > A,epcavs(B). Hence the necessary condition holds.
(«<): Suppose the necessary condition holds. Then, by Theorem 4.4 in [27], it is clear that

pr(A) = V N\ 1s(Ba).
{Ba}aerC2X, A=,y Ba a€T
Let A € 2%, Suppose A =J,cp Ba and {Ba} C 2%. Then
vr(A) <V er v (Ba) [By the axiom (I0ST3)]
< Vaer v8(Ba). [Since B < 7]
Thus

(5.3.1) vr(A) < N \/ vs(Ba).

{Ba}taerc2X, A=, Ba @€l

On the other hand,

vr(A) = vaceA /\IeBcA v-(B) [By Lemma 4.2]
= V,ea Vn. (A) [By Definition 4.1]

= Vaea Nucpca vs(B) [By the hypothesis]
14



J. H. Kim et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx—xx

= Nrer,ean, Vaeavs(f(2)),
where B, = {B € 2X : 2 € B C A}. Furthermore, A = Uyea f(2), for each f € M,eaB,. So

/\ \/ ve(f(z)) = /\ \/ vg(By).
fellzeaBy z€A {Ba}aerc2X, A:UaeF B, a€l
Hence
(532) VT(A) > /\ \/ VB(BQ)-
{Ba}taerC2X, A= cr Ba @€l
By (5.3.1) and (5.3.2), vr(4) = /\{Ba}aeFCQX, A=U,r Ba V aer v8(Ba). Therefore B is an ordi-

nary intuitionistic smooth base for 7. O

Theorem 5.4. Let B: 2% — I ® 1 be a mapping. Then B is an ordinary intuitionistic smooth

base for some oist T on X if and only if it has the following conditions:

(1) (\/{Ba}aer‘c2x, X=U,er Ba /\aeF p5(Ba), /\{Ba}(xeFCQX, X=U,cr Ba vaeF vg(By)) = (1,0),
(2) for any Ay, Ay € 2% and each x € A; N As,

ps(A) Aps(A2) <\ ps(A)

TEACAINAS
and
vg(A1) Vus(A2) > N\ us(A).
TEACAINAS
In fact, 7 : 2% — I @ I is the mapping defined as follows: for each A € 2%,
1 if A= 9,
pir(A) = B herwi
V{B.}acrcax, A=U,cr Ba Naer #8(Ba)  otherwise
and
0 if A= ¢,
Vi (A) = A=
/\{Ba}angQX, A=, Ba VaEF v(By) otherwise.

In this case, 7 is called the ordinary intuitionistic smooth topology on X induced by B.

Proof. (=): Suppose B is an ordinary intuitionistic smooth base for some oist 7 on X. Then
by Definition 5.1 and the axiom (OIST1),

( V N 15(Ba), A V vs(Ba)) = 7(X) = (1,0).

{Ba}taerC2X, X=U,cr Ba @€l {Ba}taerC2X, X=U,cr Ba @€l
Thus the condition (1) holds.
Let Ay, Ay € 2% and let © € A; N Ay. Then, by the proof of Theorem 4.2 in [13], it is

obvious that 115(A1) A s(A2) < Vieaca,na, #8(A). On the other hand,

VB(Al) V I/B(AQ) 2 Z/T(Al) V I/T(A2> 2 l/.,—(Al N AQ) Z V/\/},(Al N Ag) Z /\ I/B(A).
T€ACAINA2
Thus v5(A1) Vvs(A2) > Ayeaca,na, V8(A). So the condition (2) holds.
(«<): Suppose the necessary conditions (1) and (2) are satisfied. Then, by the proof of
Theorem 4.2 in [43], we can see that the followings hold:

pr(X) = pr(0) =1,
15
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pr (AN B) > pr (A) A pr(B), for any A, B € 2%
and
MT(UaeF Aq) > /\aeF pr(Aq), for each {Aq}aer C 2%,
From the definition of 7, it is obvious that v,(X) = v,(¢) = 0. Thus 7 satisfies the axiom
(OIST1).
Let {Ay}aer C 2% and let By, = {{Bs, : 0o € Lo} : Uéael‘a Bs, = Ay} Let f € HyerBa.
Then clearly, (J,cp UB% €f(a) Bs., = Uyer Ao Thus
Ve(Uger 4a) = /\Uéer Bs=U,cr Ao Vser vs(Bs)
< AsettaerB, Vaer Vs, ef(a) v8(Bs.)

= Vaer /\{Bgazéaern}e&, Vénel‘m vs(Bs.,)
= Vaer Vr(Aa). So 7 satisfies the axiom (OIST3).

Now let A, B € 2% and suppose v, (A) < t and v, (B) < t. Then there are {A,, : oy € I';}
and {B,, : az € I'2} such that U, cp, Aoy = A, Ugyer, Ba, = B and vp(A,,) < t for each
a1 € T'1, vp(Ba,) < t for each ag € T'y. Let « € AN B. Then there are o, € I'; and ag, € T’y
such that € A,,, N Bq,,. Thus, from the assumption,

t > v(Aay,) V vs(Bay,) > A va(C).

2€CCAa,,NB

X2

Moreover, there is C, such that x € C; C A,,, N Ba,, C AN B and vp(C;) < t. Since
UwEAr']B C, = AN B, we obtain

t> \/ wvs(Cp)> A \/ vs(Ba) = v-(ANB).
z€ANB Uaer B,=ANB a€l
Now let k = v,(A) V v-(B) and let n be any natural number. Then v,(A) < k+1,/n and
v(B) <k+1/n. Thus v, (ANB)<k+1,/n. Sov.(ANB)<k=v,(A) Vv, (B). Hence 7
satisfies the axiom (OIST2). This completes the proof. O

Example 5.5. (1) Let X = {a,b,c} and let (r,s) € Iy @ Iy be fixed. We define the mapping
B:2%X — I &1 as follows: for each A € 2%,

1 if A={b} or {a,b} or {b,c}
r otherwise

and

s otherwise.

vs(A) = { 0 ifA={bfor{ab}or b}

Then we can easily see that B satisfies the conditions (1) and (2) in Theorem 5.4. Thus B is
an ordinary intuitionistic smooth base for an oist 7 on X. In fact, 7 : 2X — I @ I as follows:
for each A € 2%,

r otherwise

pir(A) = { 1 if Ae{¢,{b},{a,b},{b,c}, X}

and

va(A) = { 0 if Ae{¢,{b},{a,b},{b,c}, X}

s otherwise.
16
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(2) Let (r,s) € I @ Iy be fixed. We define the mapping B : 2% — I & I as follows: for each
A€ 2R,

1 if A= (a,b), fora, b€ R witha <b

T otherwise

and
0 if A= (a,b), fora, b€ R with a <b
vs(A) = { S otherwi(se. !

Then it can be easily seen that B satisfies the conditions (1) and (2) in Theorem 5.4. Thus B
is an ordinary intuitionistic smooth base for an oist 7(, 5y on R.

In this case, 7, 5 will be called the (r,s)-ordinary intuitionistic smooth usual topology on
R.

(3) Let (r,s) € I, @ Iy be fixed. We define the mapping B : 28 — I @ I as follows: for each
A€ 2R,
1 if A=/la,b), fora, be R witha <b
r otherwise

and

0 if A=a,b), fora, b€ R with a <b
vg(A) = .
S otherwise.
Then we can easily see that B satisfies the conditions (1) and (2) in Theorem 5.4. Thus B is
an ordinary intuitionistic smooth base for an oist 7; on R.
In this case, 7; will be called the (r, s)-ordinary intuitionistic smooth lower-limit topology on

R.

Definition 5.6. Let 7, 75 € OIST(X), and let By and B; be ordinary intuitionistic smooth

bases for 7 and 7o, respectively. Then B; and By are equivalent, if 7 = 75.

Theorem 5.7. Let 71, 70 € OIST(X), and let By and By be ordinary intuitionistic smooth
bases for T1 and T2, respectively. Then 11 is finer than To, i.e., tir;, < Wy, and vy, > v, if
and only if for each v € X and each A € 2%, if v € A, then pup,(A) <\, cpca 8, (B) and

VBl(A) > /\xEBCA VBz(B)'

Proof. (=): Suppose 7 is finer than 7. For each # € X, let z € A € 2X. Then, by Theorem
4.81in [27], ps, < Vyepca B,(B). On the other hand,
v, (A) > v, (A) [Since B; is an ordinary intuitionistic smooth base for 7]
> v, (A) [By the hypothesis]
= /\{A,y},yerCQX, A=U,cr Aa Vaer v8.(Aa).
[Since Bs is an ordinary intuitionistic smooth base for 73]

Since # € A and A = {J,cr Aa, there is ag € T' such that x € A,,. Thus

/\ \/ V52<AQ)ZV32(AO¢0)Z /\ VBz(B)'

{Aa}aerCc2¥, A=U,cp Aa @€l z€EBCA
So vg, (A) = Asepcavi:(B).
(«<): Suppose the necessary conditions hold. Then, by Theorem 4.8 in [27], 1, < fir,. Let
A € 2%, Then

vri(A) = Vyea Aencave (B) [By Lemma 4.2

> \/a:eA /\:cGBCA /\zeCCB Vg, (C) [By the hYPOtheSiS]
17
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= /\zECCA VxeA vs,(C)

= N(C.yacacax, A=y
= v, (A).

Thus v,, > v,,,. So 1 is finer than 7o. This completes the proof. O

Ca \/meA v, (Cy)

TEA

The following is the immediate result of Definition 5.6 and Theorem 5.7.

Corollary 5.8. Let By and By be ordinary intuitionistic smooth bases for two ordinary intu-
itionistic smooth topologies on a set X, respectively. Then

B1 and By are equivalent if and only if

(1) for each By € 2% and each x € By, pug,(B1) < Veen,cn, B8, (B2) and vg, (B1) >
Naepacp, VB:(B2),

(2) for each By € 2% and each x € By, up,(B2) < V,cp,cp, 5, (B1) and vg,(Bs) >

/\xEBl CBy VB (B1).

It is obvious that every ordinary intuitionistic smooth topology itself forms an ordinary
intuitionistic smooth base. Then the following provides a sufficient condition for one to see if a
mapping B : 2% — I @ I such that ug < i, and vz > v, is an ordinary intuitionistic smooth
base for 7, where 7 € OIST(X).

Proposition 5.9. Let (X, 7) be an oists, let B: 2% — I @ I be a mapping such that us < jir
and vg > v, and for each © € X and each A € 2X such that x € A, let u, < Vaicpcats(B)

and v; > N, cpcavs(B). Then B is an ordinary intuitionistic smooth base for T.

Proof. From the proof of Proposition 4.10 in [27], it is clear that the first part of the condition
(1) of Theorem 5.4 holds, i.e., \/ (5 1 _ cox, X=U,r Ba Naer 18(Ba) = 1.
On the other hand,
/\{Ba}aerc2x, X=U,cr Ba Vaer v8(Ba)
> /\{BQ}QEFC2X, X=U,cr Ba Vaer V- (Ba) [Since v > v;]
2 N\(Butacrcox, X=U, r Bo Vr(User Ba) [By the axiom (OIST3)]
= v (X)
=Vaeex Nuepex vr(B) [By Lemma 4.2]
> Vaex Nucnex Nucoc s v8(C) [By the hypothesis]
= Neeccx Vaex v8(C)
= /\{Ba}aepc?f, X=Uper Ba Vaer v8(Ba).
Since 7 € OIST(X), v(X) = 0. Thus A(p y _ cox. x—y
condition (1) of Theorem 5.4 holds.
Now let Ay, Ay € 2% and let # € A; N Ay. Then, by the proof of Proposition 4.10 in [27], it
is obvious that pp(A1) A us(A2) <V ,caca,na, #8(A). On the other hand,
(A1) Vp(Az) > v (A1) V- (As) [Since vp > v;]
> v-(A; N Ay) [By the axiom (OIST?2)]
> Aveaca,na, v8(A). [By the hypothesis]
Thus the condition (2) of Theorem 5.4 holds. So, by Theorem 5.4, B is an ordinary intuitionistic

Ba vaEI‘ VB(BQ) = 0. So the

ael

smooth base for 7. This completes the proof. O

Definition 5.10. Let (X, 7) be an oists and let ¢ : 2% — I ®© T be a mapping. Then ¢ is called

an ordinary intuitionistic smooth subbase for 7, if ¢ is an ordinary intuitionistic smooth base
18
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for 7, where ¢ : 2%X — I @ I is the mapping defined as follows: for each A € 2%,
‘PH(A) = ( \/ /\ Uw(Ba)7 /\ \/ Vsa(Ba))a
{Ba}C2X, A=Mycp Ba @€T {Ba}2X, A=, cp Ba @€l

where C stands for “a finite subset of”.

Example 5.11. Let (r,s) € I; @ I be fixed. We define the mapping ¢ : 28 — I @ I as follows:
for each A € 28,

(4) = 1 if A= (a,00) or (—00,b) or (a,b)
He r otherwise

and
0 if A= (a,00) or (—o0,b) or (a,b)
vp(A) = .
s otherwise,
where a, ,b € R such that a < b. Then we can easily see that ¢ is an ordinary intuitionistic

smooth subbase for the (r, s)-ordinary intuitionistic smooth usual topology U, 5y on R.

Theorem 5.12. Let ¢ : 2X — I ® I be a mapping. Then ¢ is an ordinary intuitionistic

smooth subbase for some oist if and only if V{BQ}QEFCZX, X=U. ., Ba Aaer to(Ba) = 1 and

ael
/\{Ba}aeFCQX, X=Uper Ba Vaer Ve(Ba) = 0.

Proof. (=): Suppose ¢ is an ordinary intuitionistic smooth subbase for some oist. Then, by
Definition 5.10, it is clear that the necessary condition holds.

(«<): Suppose the necessary condition holds. We only show that ¢ satisfies the condition
(2) in Theorem 5.4. Let A, B € 2% and x € AN B, for each 2 € X. Then, by the proof of
Theorem 4.3 in [43], it is obvious that pu,n(A) A pen (B) < Vcocans o (C).

On the other hand,

Vn (A) vV V¢ﬂ (B)
= (/\ﬂalerl Bo, =A va1€F1 Vap(BOq)) v (/\ﬂ Bo,=B Vagerz Vc,a(Bzm))
At 51r ANy sV, Yo B Vo, vl

ag€l'y

> An.,..p Ba=anB Vaer Ve(Ba)

= Vypn (A N B)
Since € AN B, vyn(A) V ven(B) > ven(ANB) > Aicoc anp Vor (C). Thus o' satisfies the
condition (2) in Theorem 5.4. This completes the proof. O

Example 5.13. Let X = {a,b,c,d, e} and let (r,s) € I & Iy be fixed. We define the mapping
0 :2% —» T @I as follows: for each A € 2%,

o (A) ={ i i(f)tﬁef W{éz}v{a’bac},{b,c, d}, {c,e}}

and

() _{ 0 ifAe{{a},{a,bc}, {b,c,d}, {c,e}}

S otherwise,

Then X = {a} U{b,c,d} U{c, e}, pon({a}) = pern({b,c,d}) = pon({c,e}) =1 and vyn({a}) =
von ({b,¢,d}) = von({c,e}) = 0. Thus

\/ /\ fp(Ba) =1

{Bu}aeFC2X: X:Uaer B, a€l’
19



J. H. Kim et al./Ann. Fuzzy Math. Inform. x (201y), No. x, xx—xx

and

A \/ vo(Ba) = 0.

{Ba}aerC2X, X=UJ,cp Bo €T

So, by Theorem 5.12, ¢ is an ordinary intuitionistic smooth subbase for some oist.
The following is the immediate result of Corollary 5.8 and Theorem 5.12.

Proposition 5.14. ¢1, o :2%X — I @I be two mappings such that
( \/ /\ :ul,ﬂl(Ba)’ /\ \/ Vsal(Ba)) = (170)
{Ba}aerc2¥X, X:Uaer Bq a€l {Ba}aerc2X, X:Uaer B, a€l’
and
( \/ /\ :U‘@Q(Ba)a /\ \/ V@Q(BQ)) = (170)
{Ba}taerC2X, X=U,cp Ba @€l {Ba}aerC2X, X={,cr Ba @€l

Suppose the two conditions hold:
(1) for each S1 € 2% and each x € Si, py,(S1) < Viyeg,cs, Moo (S2) and vy, (S)

/\xGSQCsl Ve, (52);
(1) for each Sy € 2% and each x € Sa, pp,(S2) < Vees, s, Her (S1) and vy, (S2) >

/\$€S1 CSa Ve, (Sl)
Then p1 and w2 are ordinary intuitionistic smooth subbases for the same ordinary intuitionistic

Y

smooth topology on X.

6. CONCLUSIONS

We defined an ordinary intuitionistic smooth topology and level set of an oist, and obtain
some their basic properties and gave some examples. Also we defined an ordinary intuitionistic
smooth subspace. Next, we introduced the concept of an ordinary intuitionistic smooth neigh-
borhood system and and we proved that an ordinary intuitionistic smooth neighborhood system
has the same properties in a classical neighborhood system (See Theorem 4.5). Finally, we de-
fined an ordinary intuitionistic smooth base and an ordinary intuitionistic smooth subbase, and
obtain two characterization of an ordinary intuitionistic smooth base (See Theorems 5.3 and
5.4) and one characterization of an ordinary intuitionistic smooth subbase (See Theorem 5.12),

and gave some their examples.
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